Chinese Science Bulletin

, Volume 56, Issue 9, pp 835–839

Fine mapping of the awn gene on chromosome 4 in rice by association and linkage analyses

  • GuangLong Hu
  • DongLing Zhang
  • HuiQiao Pan
  • Ben Li
  • JianTao Wu
  • XueYa Zhou
  • QunYuan Zhang
  • Lei Zhou
  • GuoXin Yao
  • JunZhou Li
  • JinJie Li
  • HongLiang Zhang
  • ZiChao Li
Open Access
Letter Crop Germplasm Resources

Abstract

Awnness is a key trait in rice domestication, yet no studies have been conducted on fine mapping or association mapping of the rice awn gene. In this study, we investigated the awnness and genotype of a core collection of 303 cultivated rice varieties and a BC5F2 segregating population of 200 individuals. Combining association and linkage analyses, we mapped the awnness related genes to chromosome 4. Primary association analysis using 24 SSR markers revealed five loci significantly associated with awnness on chromosome 4. The associated markers cover previously identified regions. Fine association mapping was conducted using another 29 markers within a 4-Mb region, covering the associated marker in34, which is close to the awn gene Awn4.1. Seven associated markers were revealed, distributed over an 870-kb region. Combining the fine association mapping and linkage analysis of awnness in the 200 BC5F2 segregating population, we finally identified a 330-kb region as the candidate region for Awn4.1. The results indicate that combining association mapping and linkage mapping provides an efficient and precise approach to both genome-wide mapping and fine mapping of rice genes.

Keywords

rice awn association mapping linkage analysis fine mapping 

References

  1. 1.
    Hsieh S C. Bot Bull Acad Sin, 1960, 1: 117–132Google Scholar
  2. 2.
    Nagao S, Takahashi M E. J Fac Agr Hokkaido Univ, 1963, 53: 72–130Google Scholar
  3. 3.
    Iwata N, Omura T. Sci Bull Fac Agr Kyushu Univ, 1971, 25: 137–153Google Scholar
  4. 4.
    Takamure I, Kinoshita T. Rice Genet Newsl, 1991, 8: 98–99Google Scholar
  5. 5.
    Xiong L Z, Liu K D, Dai X K, et al. Theor Appl Genet, 1999, 98: 243–251CrossRefGoogle Scholar
  6. 6.
    Thomson M, Tai T, McClung A, et al. Theor Appl Genet, 2003, 107: 479–493CrossRefGoogle Scholar
  7. 7.
    Kurakazu T, Yoshimura A. Rice Genet Newsl, 2001, 18: 28–30Google Scholar
  8. 8.
    Gu X Y, Kianian S F, Hareland G A, et al. Theor Appl Genet, 2005, 110: 1108–1118CrossRefGoogle Scholar
  9. 9.
    Gu X Y, Kianian S F, Foley M E. Genetics, 2005, 171: 695–704CrossRefGoogle Scholar
  10. 10.
    Flint-Garcia S A, Thornsberry J M, Buckler E S. Annu Rev Plant Biol, 2003, 54: 357–374CrossRefGoogle Scholar
  11. 11.
    Salvi S, Tuberosa R. Trends Plant Sci, 2005, 10: 297–304CrossRefGoogle Scholar
  12. 12.
    Wu R, Zeng Z B. Genetics, 2001, 157: 899–909Google Scholar
  13. 13.
    Yu J, Pressoir G, Briggs W H, et al. Nat Genet, 2006, 38: 203–208CrossRefGoogle Scholar
  14. 14.
    Thornsberry J M, Goodman M M, Doebley J, et al. Nat Genet, 2001, 28: 286–289CrossRefGoogle Scholar
  15. 15.
    Kraakman A T, Niks R E, van den Berg P M, et al. Genetics, 2004, 168: 435–446CrossRefGoogle Scholar
  16. 16.
    Aranzana M J, Kim S, Zhao K, et al. PLoS Genet, 2005, 1: 531–539CrossRefGoogle Scholar
  17. 17.
    Mazzucato A, Papa R, Bitocchi E, et al. Theor Appl Genet, 2008, 116: 657–669CrossRefGoogle Scholar
  18. 18.
    Zhu C S, Gore M, Buckler E S, et al. Plant Genome, 2008, 1: 5–20CrossRefGoogle Scholar
  19. 19.
    Silke S, Grit H, Jean-Baptiste V, et al. Theor Appl Genet, 2009, 118: 259–273CrossRefGoogle Scholar
  20. 20.
    Yao J, Wang L X, Liu L H, et al. Genetica, 2009, 137: 67–75CrossRefGoogle Scholar
  21. 21.
    Wen W, Mei H, Feng F, et al. Theor Appl Genet, 2009, 119: 459–470CrossRefGoogle Scholar
  22. 22.
    Zhang H L, Zhang D L, Wang M X, et al. Theor Appl Genet, 2010, doi: 10.1007/s00122-010-1421-7Google Scholar
  23. 23.
    Pritchard J K, Stephens M, Donnelly P. Genetics, 2000, 155: 945–959Google Scholar
  24. 24.
    Evanno G, Regnaut S, Goudet J. Mol Ecol, 2005, 14: 2611–2620CrossRefGoogle Scholar
  25. 25.
    Zhang D L. Dissertation for the Doctoral Degree. Beijing: China Agricultural University, 2007Google Scholar
  26. 26.
    Benjamini Y, Hochberg Y. J Roy Stat Soc Ser B, 1995, 57: 289–300Google Scholar
  27. 27.
    Menard S W. Thousand Oaks, CA: SAGE Publication, Inc., 1995Google Scholar
  28. 28.
    Michelmore R W, Paran I, Kesseli R V. Proc Natl Acad Sci USA, 1991, 88: 9828–9832CrossRefGoogle Scholar
  29. 29.
    Lincoln S, Daly M, Lander E. Genomics, 1992, 1: 174–181Google Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • GuangLong Hu
    • 1
  • DongLing Zhang
    • 1
  • HuiQiao Pan
    • 1
  • Ben Li
    • 1
  • JianTao Wu
    • 1
  • XueYa Zhou
    • 2
  • QunYuan Zhang
    • 1
    • 3
  • Lei Zhou
    • 1
  • GuoXin Yao
    • 1
  • JunZhou Li
    • 1
  • JinJie Li
    • 1
  • HongLiang Zhang
    • 1
  • ZiChao Li
    • 1
  1. 1.Key Laboratory of Crop Genomics and Genetic Improvement of Ministry of Agriculture, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
  2. 2.Key Laboratory of Bioinformatics and Bioinformatics Division of Ministry of Education, Tsinghua National Laboratory for Information Sciences and Technology, Department of AutomationTsinghua UniversityBeijingChina
  3. 3.Division of Statistical GenomicsWashington University School of MedicineSt LouisUSA

Personalised recommendations