Chinese Science Bulletin

, Volume 55, Issue 33, pp 3847–3852 | Cite as

Global cooling in the immediate future?

  • ShaoWu Wang
  • XinYu WenEmail author
  • JianBin Huang
Forum Atmospheric Science


New perspectives regarding the possible cooling of the Earth’s climate as a result of solar changes are reviewed in this paper. The major findings include: (1) solar activity is weakening to its very low level, which is comparable with the level in the early 20th century; (2) the current grand solar maximum has already lasted for eight 11-year solar cycles and might end in the coming one/two 11-year cycles; (3) a grand solar minimum might prevail in the next 100–200 years; and (4) the number of sunspots in the coming solar maximum (M)-year, around 2013, is an important indicator that needs to be closely monitored.


Climate change global cooling solar activity solar maximum solar minimum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang S W. The global warming debate. Chinese Sci Bull, 2010, 55: 1961–1962CrossRefGoogle Scholar
  2. 2.
    Lockwood M, Harrison R G, Woollings T, et al. Are cold winters in Europe associated with low solar activity? Environ Res Lett, 2010, 5: 024001CrossRefGoogle Scholar
  3. 3.
    Benestad R E. Low solar activity is blamed for winter chill over Europe. Environ Res Lett, 2010, 5: 021001CrossRefGoogle Scholar
  4. 4.
    Livingston W, Penn M. Are sunspots different during this solar minimum? EOS, 2009, 90: 257–264CrossRefGoogle Scholar
  5. 5.
    Feulner G, Rahmstorf S. On the effect of a new grand minimum of solar activity on the future climate on Earth. Geophys Res Lett, 2010, 37: L05707CrossRefGoogle Scholar
  6. 6.
    Solomon S, Qin D, Manning M, et al. Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambriage University Press, 2007. 996Google Scholar
  7. 7.
    Buchen L. What will the next solar cycle bring? Nature, 2010, 463: 414CrossRefGoogle Scholar
  8. 8.
    Lockwood M. Solar change and climate: An update in the light of current exceptional solar minimum. Proc R Soc A, 2010, 466: 303–329CrossRefGoogle Scholar
  9. 9.
    Russell C T, Luhmann J G, Jian L K. How unprecedented a solar minimum? Rev Geophys, 2010, 48: RG2004, doi:10.1029/2009RG0-00316CrossRefGoogle Scholar
  10. 10.
    Emmert J T, Lean J L, Picone J M. Record-low thermospheric density during the 2008 solar minimum. Geophys Res Lett, 2010, 37: L12102, doi:10.1029/2010GL043671CrossRefGoogle Scholar
  11. 11.
    Penn M J, Livingston W. Temporal changes in sunspot umbral magnetic fields and temperatures. Astrophys J, 2006, 649: L45–L48CrossRefGoogle Scholar
  12. 12.
    Norton A A, Gilman P. Magnetic field-minimum intensity correlation in sunspots: A tool for solar dynamo diagnostics. Astrophys J, 2004, 603: 348–354CrossRefGoogle Scholar
  13. 13.
    Fröhlich C, Lean J. Solar radiative output and its variability: Evidence and mechanisms. The Astron Astrophys Rev, 2004, 12: 273–320CrossRefGoogle Scholar
  14. 14.
    Usoskin G, Solonki S K, Kovaltsov G A. Grand minima and maxima of solar activity: New observational constraints. Astron Astrophys, 2007, 471: 301–309CrossRefGoogle Scholar
  15. 15.
    Abreu J A, Beer J, Steinhilber F, et al. For how long will the current grand maximum of solar activity persist? Geophys Res Lett, 2008, 35: L20109CrossRefGoogle Scholar
  16. 16.
    Tobias S M, Weiss N O, Beer J. Long-term prediction of solar activity. Astron Geophys, 2004, 45: 2.6CrossRefGoogle Scholar
  17. 17.
    Schüssler M. Are solar cycles predictable? Astron Nachr, 2007, 328: 1087–1091CrossRefGoogle Scholar
  18. 18.
    Solanki S K, Usoskin I G, Kromer B, et al. Unusual activity of the Sun during recent decades compared to the previous 11000 years. Nature, 2004, 431: 1084–1087CrossRefGoogle Scholar
  19. 19.
    Hoyt D V, Schatten K H. Group sunspot numbers: A new solar activity reconstruction. Sol Phys, 1998, 179: 189–219CrossRefGoogle Scholar
  20. 20.
    Usoskin I G. Millennium-scale sunspot number reconstruction: Evidence for an unusually active sun since the 1940s. Phys Rev Lett, 2003, 91: 211101CrossRefGoogle Scholar
  21. 21.
    Goslar T. 14C as an indicator of solar variability. PAGES News, 2003, 11: 12–14Google Scholar
  22. 22.
    McCracken K G, McDonald F B. A phenomenological study of the long-term cosmic ray modulation, 850-1958AD. J Geophys Res, 2004, 109: A12103CrossRefGoogle Scholar
  23. 23.
    Haltia-Hovi E, Saarinen T, Kukkonen M. A 2000-year record of solar forcing on carved lake sediment in eastern Finland. Quat Sci Rev, 2007, 26: 678–689CrossRefGoogle Scholar
  24. 24.
    Stuiver M, Braziumas T F. Atmospheric 14C and century-scale solar oscillations. Nature, 1989, 338: 405–408CrossRefGoogle Scholar
  25. 25.
    Wagner G, Beer J, Masarik J, et al. Presence of the solar de Vries cycle (∼205 years) during the last ice age. Geophys Res Lett, 2001, 28: 303–306CrossRefGoogle Scholar
  26. 26.
    Lundstedt H, Liszka L, Lundin R, et al. Long-term activity explored with wavelet methods. Ann Geophys, 2006, 24: 769–778CrossRefGoogle Scholar
  27. 27.
    Clilverd M A, Clarke E, Rishbeth H, et al. Solar activity levels in 2100. Astron Geophys, 2003, 44: 5.20CrossRefGoogle Scholar
  28. 28.
    Fröhlich C, Lean J. Solar radiative output and its variability: Evidence and mechanisms. Astron Astrophys Rev, 2004, 12: 273–320CrossRefGoogle Scholar
  29. 29.
    Willson R C, Moravinov A V. Secular total irradiance trend during solor cycles 21–23. Geophys Res Lett, 2003, 30: 1199, doi: 10. 1029/2002GL016038CrossRefGoogle Scholar
  30. 30.
    Haigh J D. The effects of solar variability on the Earth’s climate. Phil Trans R Soc Lond A, 2003, 361: 95–111CrossRefGoogle Scholar
  31. 31.
    Lean J, Rottman G, Harder J, et al. Sorce contributions to new understanding of global change and solar variability. Sol Phys, 2005, 230: 27–53CrossRefGoogle Scholar
  32. 32.
    Jansen E, Overpeck J, Briffa K R, et al. Palaeoclimate, in Climate Change 2007: The Physical Science Basis. In: Solomon S, Qin D, Manning M, et al., eds. Contribntion of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press. 2007. 433–497Google Scholar
  33. 33.
    Carslaw K S, Harrison R G, Kirkby J. Cosmic rays, clouds, and climate. Science, 2002, 298: 1732–1736CrossRefGoogle Scholar
  34. 34.
    Lockwood M. What do cosmogenic isotopes tell us about past solar forcing of climate? Space Sci Rev, 2006, 125: 95–109CrossRefGoogle Scholar
  35. 35.
    Svensmark H. Cosmoclimatology: A new theory emerges. Astron Geophys, 2007, 48: 1.18CrossRefGoogle Scholar
  36. 36.
    Mann M E, Zhang Z H, Hughes M K, et al. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Nat Acad Sci USA, 2008, 105: 13252–13257CrossRefGoogle Scholar
  37. 37.
    Wang S W, Luo Y, Zhao Z C, et al. Debating about the climate warming. Prog Nat Sci, 2006, 16: 1–6CrossRefGoogle Scholar
  38. 38.
    Feulner G, Rahmstorf S. On the effect of a new grand minimum of solar activity on the future climate on Earth. Geophys Res Lett, 2010, 37: L05707, doi: 10.1029/2010GL042710CrossRefGoogle Scholar
  39. 39.
    Song X, Lubin D, Zhang G J. Increased greenhouse gases enhance regional climate response to a Maunder Minimum. Geophys Res Lett, 2010, 37: L01703, doi: 10.1029/2009GL041290CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Atmospheric and Oceanic Sciences, School of PhysicsPeking UniversityBeijingChina

Personalised recommendations