Advertisement

Chinese Science Bulletin

, Volume 55, Issue 23, pp 2489–2496 | Cite as

Experimental and theoretical investigation of zinc diffusion in N-GaSb

  • Hong YeEmail author
  • LiangLiang Tang
  • YuLong Ma
Article Applied Physics

Abstract

Zinc diffusion process in N-GaSb was studied with excessive, appropriate and insufficient quantity of diffusion source (zinc pellets). Kink-and-tail type zinc concentration profiles obtained with appropriate zinc pellets quantity were successfully simulated using the assumption that the vacancy mechanism mediated by V Ga 0 and kick-out mechanism mediated by I Ga + take effect at the same time. It is found out that for diffusion temperature from 460°C to 500°C, the zinc surface concentration of the diffused samples has nearly no change and the logarithmic value of the zinc surface diffusion coefficient is linear with the reciprocal value of diffusion temperature; when the diffusion temperature is constant, both the zinc surface concentration and diffusion coefficient do not change with diffusion time.

Keywords

GaSb zinc diffusion kink-and-tail profile diffusion mediated by multiple defects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bett A W, Keser S, Sulima O V. Study of Zn diffusion into GaSb from the vapour and liquid phase. J Cryst Growth, 1997, 181: 9–16CrossRefGoogle Scholar
  2. 2.
    Sulima O V, Bett A W, Mauk M G, et al. Diffusion of Zn in TPV materials: GaSb, InGaSb, InGaAsSb and InAsSbP. In: Thermophotovoltaic Generation of Electricity: Fifth Conference on Thermophotovoltaic Generation of Electricity. AIP Conf Proc, 2003, 653: 402–413Google Scholar
  3. 3.
    Schlegl T, Sulima O V, Bett A W. The influence of surface prepara tion on Zn-diffusion process in GaSb. In: Thermophotovoltaic Generation of Electricity: Sixth Conference on Thermophotovoltaic Generation of Electricity, TPV6. AIP conf Proc, 2004, 738: 396–403Google Scholar
  4. 4.
    Nicols S P, Bracht H, Benamara M, et al. Mechanism of zinc diffusion in gallium antimonide. Physica B, 2001, 308-310: 854–857CrossRefGoogle Scholar
  5. 5.
    Sunder K, Bracht H, Nicols S P, et al. Zinc and gallium diffusion in gallium antimonide. Phys Rev B, 2007, 75: 245210CrossRefGoogle Scholar
  6. 6.
    Conibeer G, Willoughby A F W, Hardingham C M, et al. Zinc diffusion in Tellurium doped gallium antimonide. J Electr Mater, 1996, 25: 1108–1112CrossRefGoogle Scholar
  7. 7.
    Sundram V S, Gruenbaum P E. Zinc diffusion in GaSb. J Appl Phys, 1993, 73: 3787–3789CrossRefGoogle Scholar
  8. 8.
    Nicols S P. Self- and zinc diffusion in gallium antimonide. Master Dissertation. San Diego: University of California, 1998Google Scholar
  9. 9.
    Simcock M N, Santailler J L, Dusserre P, et al. Zinc diffusion in GaSb for thermophotovoltaic cell application. In: Thermophotovoltaic Generation of Electricity: Sixth Conference on Thermophotovoltaic Generation of Electricity, TPV6. AIP Conf Proc, 2004, 738: 303–310Google Scholar
  10. 10.
    Rai S K. Zinc diffusion in GaAsSb from spin-on glass dopant sources. Master Dissertation. Indiana: University of Notre Dame, 2004Google Scholar
  11. 11.
    Sunder K, Bracht H. Defect reactions in gallium antimonide studied by zinc and self-diffusion. Phys Rev B, 2007, 75: 245210CrossRefGoogle Scholar
  12. 12.
    Bracht H, Norsent M S, Haller E E, et al. Zinc diffusion enhanced Ga diffusion in GaAs isotope heterostructures. Physica B, 2001, 308–310: 831–834CrossRefGoogle Scholar
  13. 13.
    Bracht H, Brotzmann S. Zinc diffusion in Gallium arsenide and the properties of gallium interstitials. Phys Rev B, 2005, 71: 115216CrossRefGoogle Scholar
  14. 14.
    Reynolds S, Vook D W, Gibbons J F. Open-tube Zn diffusion in GaAs using diethylzinc and trimethylarsenic: Experiment and model. J Appl Phys, 1988, 63: 1052–1059CrossRefGoogle Scholar
  15. 15.
    Xia L F, Zhang Z X. Diffusion in Metals (in Chinese). Harbin: Harbin Institute of Technology Press, 1989. 48Google Scholar
  16. 16.
    Frank F C, Turnbull D. Mechanism of diffusion of copper in germanium. Phys Rev, 1956, 104: 617–618CrossRefGoogle Scholar
  17. 17.
    Gu Z Y, Tian L W, Fu L W. Semiconductor Physics (in Chinese). Beijing: Publishing House of Electronics Industry, 1995. 16Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Thermal Science and Energy EngineeringUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations