Advertisement

Chinese Science Bulletin

, Volume 55, Issue 25, pp 2794–2798 | Cite as

A novel self-promoted Morita-Baylis-Hillman-like dimerization

  • Qiang Li
  • Kittiya Wongkhan
  • XianCai Luo
  • Andrei S. Batsanov
  • Judith A. K. Howard
  • Yu Lan
  • YunDong WuEmail author
  • Todd B. MarderEmail author
  • AiWen LeiEmail author
Letter Organic Chemistry

Abstract

While stable in CH2Cl2, hexane or THF, in the presence of MeOH, self-promoted dimerization of the triarylphosphine-alkene 1, a ligand for Pd-catalyzed reactions, produced an unusual racemic bis(phosphine) 2 in high yield. The reaction of 2 with Pd(dba)2, followed by oxidative addition of p-IC6H4NO2, yielded a trans-chelated Pd(II) aryl iodide complex.

Keywords

phosphine ligand palladium DFT calculations reaction mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Morita K, Suzuki Z, Hirose H. Bull Chem Soc Jpn, 1968, 41: 2815CrossRefGoogle Scholar
  2. 2.
    Baylis A B, Hillman M E D. German Patent 2155113 [Chem Abstr 1972, 77, 34174q], 1972Google Scholar
  3. 3.
    Basavaiah D, Rao P D, Hyma R S. Tetrahedron, 1996, 52: 8001–8062CrossRefGoogle Scholar
  4. 4.
    lmeida W P, Coelho F. Tetrahedron Lett, 2003, 44: 937–940CrossRefGoogle Scholar
  5. 5.
    Feltrin M P, Almeida W P. Synth Commun, 2003, 33: 1141–1146CrossRefGoogle Scholar
  6. 6.
    Iwabuchi Y, Furukawa M, Esumi T, et al. Chem Commun, 2001, 2030–2031Google Scholar
  7. 7.
    Liu Y, Shi M. Adv Synth Catal, 2008, 350: 122–128CrossRefGoogle Scholar
  8. 8.
    Ciganek E. Organic Reactions, 1997, 51: 201–350Google Scholar
  9. 9.
    Singh V, Batra S. Tetrahedron, 2008, 64: 4511–4574CrossRefGoogle Scholar
  10. 10.
    Masson G, Housseman C, Zhu J. Angew Chem Int Ed, 2007, 46:4614–4628CrossRefGoogle Scholar
  11. 11.
    Krishna P R, Reddy P V N, Sreeshailam A, et al. Tetrahedron Lett, 2007, 48: 6466–6470CrossRefGoogle Scholar
  12. 12.
    Zhou A, Hanson P R. Org Lett, 2008, 10: 2951–2954CrossRefGoogle Scholar
  13. 13.
    Tang H, Zhao G, Zhou Z, et al. Eur J Org Chem, 2008, 126–135Google Scholar
  14. 14.
    Jiang Y, Shi Y, Shi M. J Am Chem Soc, 2008, 130: 7202–7203CrossRefGoogle Scholar
  15. 15.
    Cabrera S, Aleman J, Bolze P, et al. Angew Chem Int Ed, 2008, 47: 121–125CrossRefGoogle Scholar
  16. 16.
    Van Steenis D J V C, Marcelli T, Lutz M, et al. Adv Synth Catal, 2007, 349: 281–286CrossRefGoogle Scholar
  17. 17.
    Utsumi N, Zhang H, Tanaka F, et al. Angew Chem Int Ed, 2007, 46: 1878–1880CrossRefGoogle Scholar
  18. 18.
    Trost B M, Brennan M K. Org Lett, 2007, 9: 3961–3964CrossRefGoogle Scholar
  19. 19.
    Langer P. Angew Chem Int Ed, 2000, 39: 3049–3052Google Scholar
  20. 20.
    Basavaiah D, Rao A J, Satyanarayana T. Chem Rev, 2003, 103: 811–891CrossRefGoogle Scholar
  21. 21.
    Price K E, Broadwater S J, Walker B J, et al. J Org Chem, 2005, 70: 3980–3987CrossRefGoogle Scholar
  22. 22.
    Aggarwal V K, Fulford S Y, Lloyd-Jones G C. Angew Chem Int Ed, 2005, 44: 1706–1708CrossRefGoogle Scholar
  23. 23.
    Kataoka T, Kinoshita H, Iwama T, et al. Tetrahedron, 2000, 56: 4725–4731CrossRefGoogle Scholar
  24. 24.
    Santos L S, Pavam C H, Almeida W P, et al. Angew Chem Int Ed, 2004, 43: 4330–4333CrossRefGoogle Scholar
  25. 25.
    Shi M, Li C, Jiang J. Reexamination of the traditional Baylis-Hillman reaction. Tetrahedron, 2003, 59: 1181–1189CrossRefGoogle Scholar
  26. 26.
    Perlmutter P, Puniani E, Westman G. Tetrahedron Lett, 1996, 37: 1715–1718CrossRefGoogle Scholar
  27. 27.
    Khan A A, Emslie N D, Drewes S E, et al. Chem Ber, 1993, 126: 1477–1480CrossRefGoogle Scholar
  28. 28.
    Auge J, Lubin N, Lubineau A. Tetrahedron Lett, 1994, 35: 7947–7948Google Scholar
  29. 29.
    Basavaiah D, Krishnamacharyulu M, Rao J. Synth Commun, 2000, 30: 2061–2069CrossRefGoogle Scholar
  30. 30.
    Aggarwal V K, Dean D K, Mereu A, et al. J Org Chem, 2002, 67: 510–514CrossRefGoogle Scholar
  31. 31.
    Yu C, Liu B, Hu L. J Org Chem, 2001, 66: 5413–5418CrossRefGoogle Scholar
  32. 32.
    Cai J, Zhou Z, Zhao G, et al. Org Lett, 2002, 4: 4723–4725CrossRefGoogle Scholar
  33. 33.
    Roy D, Sunoj R B. Org Lett, 2007, 9: 4873–4876CrossRefGoogle Scholar
  34. 34.
    Robiette R, Aggarwal V K, Harvey J N. J Am Chem Soc, 2007, 129: 15513–15525CrossRefGoogle Scholar
  35. 35.
    Jones C E S, Turega S M, Clarke M L, et al. Tetrahedron Lett, 2008, 49: 4666–4669CrossRefGoogle Scholar
  36. 36.
    Balzer M M, Anderson J D. J Org Chem, 1965, 30: 1357–1360CrossRefGoogle Scholar
  37. 37.
    Basavaiah D, Gowriswari V V L, Bharathi T K. Tetrahedron Lett, 1987, 28: 4591–4592CrossRefGoogle Scholar
  38. 38.
    Amri H, Rambaud M, Villieras J. Tetrahedron Lett, 1989, 30: 7381–7382CrossRefGoogle Scholar
  39. 39.
    Hwu J R, Hakimelahi G H, Chou C T. Tetrahedron Lett, 1992, 33: 6469–6472CrossRefGoogle Scholar
  40. 40.
    Jenner G. Tetrahedron Lett, 2000, 41: 3091–3094CrossRefGoogle Scholar
  41. 41.
    Luo X C, Zhang H, Duan H, et al. Org Lett, 2007, 9: 4571–4574CrossRefGoogle Scholar
  42. 42.
    Shi W, Luo Y D, Luo X C, et al. Investigation of an efficient palladium-catalyzed C(sp)-C(sp) cros. J Am Chem Soc, 2008, 130: 14713–14720CrossRefGoogle Scholar
  43. 43.
    Zhang H, Luo X C, Wongkhan K, et al. Chem Eur J, 2009, 15: 3823–3829CrossRefGoogle Scholar
  44. 44.
    Lam KC, Lin Z, Marder T B. Organometallics, 2007, 26: 758–760CrossRefGoogle Scholar
  45. 45.
    Lin B L, Liu L, Fu Y, et al. Comparing nickel- and palladium-catalyzed Heck reactions. Organometallics, 2004, 23: 2114–2123CrossRefGoogle Scholar
  46. 46.
    Li Z, Fu Y, Guo Q X, et al. Organometallics, 2008, 27: 4043–4049CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.College of Chemistry and Molecular SciencesWuhan UniversityWuhanChina
  2. 2.Department of ChemistryDurham UniversityDurhamUK
  3. 3.College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina

Personalised recommendations