Chinese Science Bulletin

, Volume 55, Issue 27–28, pp 3085–3093 | Cite as

Dendrimers as carriers for contrast agents in magnetic resonance imaging

  • GuoPing Yan
  • ChaoWu Ai
  • Liang Li
  • RongFeng Zong
  • Fan Liu
Review Polymer Chemistry


Magnetic resonance imaging (MRI) is a non-invasive clinical imaging modality, which has become widely used in the diagnosis of human diseases around the world. Some MRI exams include the use of contrast agents. The goal of an ideal MRI contrast agent involves the tissue- or organ-targeting materials with high relaxivity and specificity, low toxicity and side effects, suitable long intravascular duration and excretion time and high contrast enhancement with low doses, in vivo, all coupled to low overall cost. Dendrimers are synthetic, highly branched, mono-disperse macromolecules of nanometer dimensions. Properties associated with these dendrimers such as uniform size, water solubility, modifiable surface functionality and available internal cavities make them candidates for ideal carriers of MRI contrast agents. The research progress of the dendritic contrast agents is discussed.


magnetic resonance imaging (MRI) contrast agents paramagnetic metal chelates dendrimers tissue or organ-targeting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lauterbur P C. Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature, 1973, 242: 190–191CrossRefGoogle Scholar
  2. 2.
    Gallez B, Swartz H M. In vivo EPR: When, how and why? NMR Biomed, 2004, 17: 223–225CrossRefGoogle Scholar
  3. 3.
    Lauffer R B. Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: Theory and design. Chem Rev, 1987, 87: 901–927CrossRefGoogle Scholar
  4. 4.
    Sener R N. Diffusion MRI findings in phenylketonuria. Eur Radiol, 2003, 13: L226–L229CrossRefGoogle Scholar
  5. 5.
    Caravan P, Ellison J J, Mcmurry T J, et al. Gadolinium (III) chelates as MRI contrast agents: Structure, dynamics, and applications. Chem Rev, 1999, 99: 2293–2352CrossRefGoogle Scholar
  6. 6.
    Yan G P, Zhuo R X. Research progress of magnetic resonance imaging contrast agents. Chinese Sci Bull, 2001, 46: 1233–1237CrossRefGoogle Scholar
  7. 7.
    Yan G P, Robinsonand L, Hogg P. Magnetic resonance imaging contrast agents: Overview and perspectives. Radiography, 2007, 13: e5–e19CrossRefGoogle Scholar
  8. 8.
    Yan G P, Peng L, Jian S Q, et al. Spin probes for electron paramagnetic resonance imaging. Chinese Sci Bull, 2008, 53: 3777–3789CrossRefGoogle Scholar
  9. 9.
    Yan G P, Bischa D, Bottle S E. Synthesis and properties of novel porphyrin spin probes containing isoindoline nitroxides. Free Radic Biol Med, 2007, 43: 111–116CrossRefGoogle Scholar
  10. 10.
    Platas-Iglesias C, Mato-Iglesias M, Djanashvili K, et al. Lanthanide chelates containing pyridine units with potential application as contrast agents in magnetic resonance imaging. Chem Eur J, 2004, 10: 3579–3590CrossRefGoogle Scholar
  11. 11.
    Weinmann H J, Brash R C, Press W R, et al. Characteristic of gadolinium-DTPA complex: A potential NMR contrast agent. Am J Radiology, 1984, 142: 619–624Google Scholar
  12. 12.
    Comblin V, Gilsoul D, Hermann M, et al. Designing new MRI contrast agents: A coordination chemistry challenge. Coord Chem Rev, 1999, 185: 451–470CrossRefGoogle Scholar
  13. 13.
    Wedeking P, Sotak C H, Telser J, et al. Quantitative dependence of MR signal intensity on tissue concentration of Gd(HP-DO3A) in the nephrectomized rat. Magn Reson Imaging, 1992, 10: 97–108CrossRefGoogle Scholar
  14. 14.
    Mikei K, Helm L, Brucher E, et al. 17O NMR study of water exchange on Gd(DTPA)(H2O)2− and Gd(DOTA)(H2O)2− related to NMR imaging. Inorg Chem, 1993, 32: 3844–3850CrossRefGoogle Scholar
  15. 15.
    Zhuo R X, Lu Z R, Wei J F, et al. The methods of synthesis of polyaminocarboxylates metal complexes. Chinese Patent, 1995, 95–1 19302.3Google Scholar
  16. 16.
    Lowe M P. MRI contrast agents: The next generation. Aust J Chem, 2002, 55: 551–556CrossRefGoogle Scholar
  17. 17.
    Waters E A, Wickline S A. Contrast agents for MRI. Basic Res Cardiol, 2008, 103: 114–121CrossRefGoogle Scholar
  18. 18.
    Yan G P, Zhang J Y, Zhou J X, et al. Targeted contrast agents for molecular imaging in magnetic resonance imaging (MRI). In: Chen X Y, ed. Recent Advances of Bioconjugate Chemistry in Molecular Imaging. Kerala, India: Research Signpost, 2008. 371–398Google Scholar
  19. 19.
    Wallace R A, Haar J P, Miller D B, et al. Synthesis and preliminary evaluation of MP-2269: A novel, nonaromatic small-molecule blood-pool MR contrast agent. Magn Reson Med, 1998, 40: 733–739CrossRefGoogle Scholar
  20. 20.
    Duarte M G, Gil M H, Peters J A, et al. Synthesis, characterization, and relaxivity of two linear Gd(DTPA)-polymer conjugates. Bioconjugate Chem, 2001, 12: 170–177CrossRefGoogle Scholar
  21. 21.
    Tóth E, Uffelen I V, Helm L, et al. Gadolinium-based linear polymer with temperature-independent proton relaxivities: A unique interplay between the water exchange and rotational contributions. Magn Reson Chem, 1998, 36: S125–S134CrossRefGoogle Scholar
  22. 22.
    Mohs A M, Wang X H, Goodrich K C, et al. PEG-g-poly (DTPA-co-L-cystine): A biodegradable macromolecular blood pool contrast agent for MR imaging. Bioconjugate Chem, 2004, 15: 1424–1430CrossRefGoogle Scholar
  23. 23.
    Lu Z R, Parker D L, Goodrich K C, et al. Extracellular biodegradable macromolecular gadolinium(III) complexes for MRI. Magn Reson Med, 2004, 51: 27–34CrossRefGoogle Scholar
  24. 24.
    Ouyang M, Zhuo R X, Fu G C. Study on synthesis and relaxivity of paramagnetic polyester metal complexes for MRI. Ion Exchange Adsorpt, 1996, 12: 324–327Google Scholar
  25. 25.
    Bai Z W, Zhuo R X. The synthesis and relaxivity of polyester-amide MRI contrast agent. Ion Exchange Adsorpt, 1996, 12: 332–335Google Scholar
  26. 26.
    Yan G P, Zhuo R X, Zhang X, et al. Hepatic targeting macromolecular MRI contrast agents. Polym Int, 2002, 51: 892–898CrossRefGoogle Scholar
  27. 27.
    Brasch R C. Rationable and applications for macromolecular Gd-based contrast agents. Magn Reson Med, 1991, 22: 282–287CrossRefGoogle Scholar
  28. 28.
    Aime S, Botta M, Crich S G, et al. Towards MRI contrast agent of improved efficacy NMR relaxometric investigations of the binding interaction HSA of a novel heptadentate macrocyclic triphosphonate Gd3+-complex. J Biol Inorg Chem, 1997, 2: 470–479CrossRefGoogle Scholar
  29. 29.
    Schuhmann-Giampieri G, Schmitt-Willich H, Frenzel T, et al. In vivo and in vitro evaluation of Gd-DTPA-polylysine as a macromolecular contrast agent for magnetic resonance imaging. Invest Radiol, 1991, 26: 969–974CrossRefGoogle Scholar
  30. 30.
    Roberts H C, Saeed M, Roberts T P L, et al. MRI of acute myocardial ischemia: Comparing a new contrast agent, Gd-dtpa-24-cascade-polymer, with Gd-dtpa. J Magn Reson Imaging, 1999, 9: 204–208CrossRefGoogle Scholar
  31. 31.
    Judd R M, Reeder S B, May-Newman K. Effects of water exchange on the measurement of myocardial perfusion using paramagnetic contrast agents. Magn Reson Med, 1999, 41: 334–342CrossRefGoogle Scholar
  32. 32.
    Wen X X, Jackson E F, Price R E, et al. Synthesis and characterization of poly(L-glutamic acid) gadolinium chelate: A new biodegradable MRI contrast agent. Bioconjugate Chem, 2004, 15: 1408–1415CrossRefGoogle Scholar
  33. 33.
    Lu Z R, Wang X H, Parker D L, et al. Poly(L-glutamic acid) Gd(III)-DOTA conjugate with a degradable spacer for magnetic resonance imaging. Bioconjugate Chem, 2003, 14: 715–719CrossRefGoogle Scholar
  34. 34.
    Uzgiris E E, Cline H, Moasser B, et al. Conformation and structure of polymeric contrast agents for medical imaging. Biomacromolecules, 2004, 5: 54–61CrossRefGoogle Scholar
  35. 35.
    Yan G P, Wang X Y, Wang X L, et al. Synthesis and in vitro property study of polyaspartamides. Chin J Chem, 2007, 25: 1748–1753CrossRefGoogle Scholar
  36. 36.
    Yan G P, Zhuo R X, Xu M Y, et al. Liver-targeting Macromolecular MRI Contrast Agents. Sci China Ser B-Chem, 2001, 44: 344–352CrossRefGoogle Scholar
  37. 37.
    Waeckerle-Mena Y, Groettrupa M. PLGA microspheres for improved antigen delivery to dendritic cells as cellular vaccines. Adv Drug Deliv Rev, 2005, 57: 475–482CrossRefGoogle Scholar
  38. 38.
    Tansey W, Ke S, Cao X Y, et al. Synthesis and characterization of branched poly(L-glutamic acid) as a biodegradable drug carrier. J Control Release, 2004, 94: 39–51CrossRefGoogle Scholar
  39. 39.
    Patri A K, Majoros I J, Baker J R. Dendritic polymer macromolecular carriers for drug delivery. Curr Opin Chem Biol, 2002, 6: 466–471CrossRefGoogle Scholar
  40. 40.
    Bezouska K. Design, functional evaluation and biomedical applications of carbohydrate dendrimers glycodendrimers. Rev Mol Biotechnol, 2002, 90: 269–290CrossRefGoogle Scholar
  41. 41.
    Choia J S, Namb K, Parkb J Y, et al. Enhanced transfection efficiency of PAMAM dendrimer by surface modification with L-arginine. J Control Release, 2004, 99: 445–456CrossRefGoogle Scholar
  42. 42.
    Namazi H, Adeli M. Dendrimers of citric acid and poly (ethylene glycol) as the new drug-delivery agents. Biomaterials, 2005, 26: 1175–1183CrossRefGoogle Scholar
  43. 43.
    Devarakonda B, Hill R A, de Villiers M M. The effect of PAMAM dendrimer generation size and surface functional group on the aqueous solubility of nifedipine. Int J Pharm, 2004, 284: 133–140CrossRefGoogle Scholar
  44. 44.
    Metullio L, Ferrone M, Coslanich A, et al. Polyamidoamine (yet not PAMAM) dendrimers as bioinspired materials for drug delivery: Structure-activity relationships by molecular simulations. Biomacromolecules, 2004, 5: 1371–1378CrossRefGoogle Scholar
  45. 45.
    Zhou J H, Wu J Y, Hafdi N, et al. PAMAM dendrimers for efficient siRNA delivery and potent gene silencing. Chem Commun, 2006: 2362–2364Google Scholar
  46. 46.
    Sanchez-Sancho F, Perez-Inestrosa E, Suau R, et al. Dendrimers as carrier protein mimetics for IgE antibody recognition: Synthesis and characterization of densely penicilloylated dendrimers. Bioconjugate Chem, 2002, 13: 647–653CrossRefGoogle Scholar
  47. 47.
    Allen M J, Raines R T, Kiessling L L. Contrast agents for mgnetic resonance imaging synthesized with ring-opening metathesis polymerization. J Am Chem Soc, 2006, 128: 6534–6535CrossRefGoogle Scholar
  48. 48.
    Neerman M F, Zhang W, Parrish A R, et al. In vitro and in vivo evaluation of a melamine dendrimer as a vehicle for drug delivery. Int J Pharm, 2004, 281: 129–132CrossRefGoogle Scholar
  49. 49.
    Beezer A E, King A S H, Martin K, et al. Dendrimers as potential drug carriers; encapsulation of acidic hydrophobes within water soluble PAMAM derivatives. Tetrahedron, 2003, 59: 3873–3880CrossRefGoogle Scholar
  50. 50.
    Vandamme T F, Brobeck L. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release, 2005, 102: 23–38CrossRefGoogle Scholar
  51. 51.
    Schatzleina A G, Zinselmeyera B H, Dufesa A C, et al. Preferential liver gene expression with polypropylenimine dendrimers. J Control Release, 2005, 101: 247–258CrossRefGoogle Scholar
  52. 52.
    Balogh L, de Leuze-Jallouli A, Dvornic P, et al. Architectural copolymers of PAMAM dendrimers and ionic polyacetylenes. Macromolecules, 1999, 32: 1036–1042CrossRefGoogle Scholar
  53. 53.
    Hudson S D, Jung H T, Percec V, et al. Direct visualization of individual cylindrical and spherical supramolecular dendrimers. Science, 1997, 278: 449–452CrossRefGoogle Scholar
  54. 54.
    Kleinman M H, Flory J H, Tomalia D A, et al. Effect of protonation and PAMAM dendrimer size on the complexation and dynamic mobility of 2-naphthol. J Phys Chem B, 2000, 104: 11472–11479CrossRefGoogle Scholar
  55. 55.
    Nicolle G M, Toth E, Schmitt-Willich H, et al. The impact of rigidity and water exchange on the relaxivity of a dendritic MRI contrast agent. Chem Eur J, 2002, 8: 1040–1048CrossRefGoogle Scholar
  56. 56.
    Stiriba S E, Frey H, Haag R. Dendritic polymers in biomedical applications: From potential to clinical use in diagnostics and therapy. Angew Chem Int Ed, 2002, 41: 1329–1334CrossRefGoogle Scholar
  57. 57.
    Esfand R, Tomalia D A. Poly(amidoamine) (PAMAM) dendrimers: From biomimicry to drug delivery and biomedical applications. Drug Discov Today, 2001, 6: 427–436CrossRefGoogle Scholar
  58. 58.
    Kobayshi H, Kawamoto S, Jo S K, et al. Macromolecular MRI contrast agents with small dendrimers: Pharmacokinetic differences between sizes and cores. Bioconjugate Chem, 2003, 14: 388–394CrossRefGoogle Scholar
  59. 59.
    Margerum L D, Campion B K, Koo M, et al. Gadolinium (III) DO3A macrocycles and polyethylene glycol coupled to dendriers effect of molecular weight on physical and biological properties of macromolecular magnetic resonance imaging contrast agents. J Alloy Comp, 1997, 249: 185–190CrossRefGoogle Scholar
  60. 60.
    Fischer M, Vögtle F. Dendrimers: From design to application—A progress report. Angew Chem Int Ed, 1999, 38: 884–905CrossRefGoogle Scholar
  61. 61.
    Wiener E C, Brechbiel M W, Brothers H, et al. Dendrimer-based metal chelates: A new class of magnetic resonance imaging contrast agents. Magn Reson Med, 1994, 31: 1–8CrossRefGoogle Scholar
  62. 62.
    Kobayashi H, Jo S K, Kawamoto S, et al. Polyamine dendrimer-based MRI contrast agents for functional kidney imaging to diagnose acute renal failure. J Magn Reson Imaging, 2004, 20: 512–518CrossRefGoogle Scholar
  63. 63.
    Kobayashi H, Kawamoto S, Saga T, et al. Positive effects of polyethylene glycol conjugation to generation-4 polyamidoamine dendrimers as macromolecular MR contrast agents. Magn Reson Med, 2001, 46: 781–788CrossRefGoogle Scholar
  64. 64.
    Wiener E C, Auteri F P, Chen J W, et al. Molecular dynamics of Ion-chelate complexes attached to dendrimers. J Am Chem Soc, 1996, 118: 7774–7782CrossRefGoogle Scholar
  65. 65.
    Bryant L H, Brechbiel M W, Wu C C, et al. Synthesis and relaxometry of high-generation (G=5, 7, 9, and 10) PAMAM dendrimer-DOTA-gadolinium chelates. J Magn Reson Imaging, 1999, 9: 348–352CrossRefGoogle Scholar
  66. 66.
    Langereis S, de Lussanet Q G, van Genderen M H P, et al. Evaluation of Gd(III)DTPA-terminated poly(propylene imine) dendrimers as contrast agents for MR imaging. NMR Biomed, 2006, 19: 133–141CrossRefGoogle Scholar
  67. 67.
    Canetta E, Maino G. Molecular dynamic analysis of the structure of dendrimers. Nucl Instrum Meth Phys Res B, 2004, 213: 71–74CrossRefGoogle Scholar
  68. 68.
    Kobayashi H, Brechbiel M W. Nano-sized MRI contrast agents with dendrimer cores. Adv Drug Deliv Rev, 2005, 57: 2271–2286CrossRefGoogle Scholar
  69. 69.
    Kobayashi H, Kawamoto S, Star R A, et al. Micro-magnetic resonance lymphangiography in mice using a novel dendrimer-based magnetic resonance imaging contrast agent. Cancer Res, 2003, 63: 271–276Google Scholar
  70. 70.
    Kobayashi H, Kawamoto S, Choyke P L, et al. Comparison of dendrimer-based macromolecular contrast agents for dynamic micro-magnetic resonance lymphangiography. Magn Reson Med, 2003, 50: 758–766CrossRefGoogle Scholar
  71. 71.
    Francese G, Dunand F A, Loosli C, et al. Functionalization of PAMAM dendrimers with nitronyl nitroxide radicals as models for the outer-sphere relaxation in dentritic potential MRI contrast agents. Magn Reson Chem, 2003, 41: 81–83CrossRefGoogle Scholar
  72. 72.
    Winalski C S, Shortkroff S, Mulkern R V, et al. Magnetic resonance relaxivity of dendrimer-linked nitroxides. Magn Reson Med, 2002, 48: 965–972CrossRefGoogle Scholar
  73. 73.
    Strable E, Bulte J W M, Moskowitz B, et al. Synthesis and characterization of soluble iron oxide-dendrimer composites. Chem Mater, 2001, 13: 2201–2209CrossRefGoogle Scholar
  74. 74.
    Yan G P, Liu M L, Li L Y. Studies on polyaspartamide gadolinium complexes containing sulfadiazine groups as MRI contrast agents. Bioconjugate Chem, 2005, 16: 967–971CrossRefGoogle Scholar
  75. 75.
    Yan G P, Liu M L, Li L Y. Studies on polyaspartamide gadolinium complexes as potential magnetic resonance imaging contrast agents. Radiography, 2005, 11: 117–122CrossRefGoogle Scholar
  76. 76.
    Yan G P, Zheng C Y, Cao W, et al. Synthesis and preliminary evaluation of gadolinium complexes containing sulfonamide groups as potential MRI contrast agents. Radiography, 2003, 9: 35–41CrossRefGoogle Scholar
  77. 77.
    Yan G P, Zhuo R X, Yang Y H, et al. Tumor-selective macromolecular MRI contrast agents. J Bioact Compat Polym, 2002, 17: 139–151CrossRefGoogle Scholar
  78. 78.
    Sega E I, Low P S. Tumor detection using folate receptor-targeted imaging agents. Cancer Metastasis Rev, 2008, 27: 655–664CrossRefGoogle Scholar
  79. 79.
    Wiener E C, Konda S, Shadron A, et al. Targeting dendrimer-chelates to tumours and tumour cells expressing the high-affinity folate receptor. Invest Radiol, 1997, 32: 748–754CrossRefGoogle Scholar
  80. 80.
    Konda S D, Aai]ref M, Wang S, et al. Specific targeting of folate-dendrimer MRI contrast agents to the high affinity folate receptor expressed in ovarian tumor xenografts. Magnetic Resonance Materials in Physics. Biol Med, 2001, 12: 104–113Google Scholar
  81. 81.
    Sun C, Sze R, Zhang M Q. Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J Biomed Mater Res A, 2006, 78A: 550–557CrossRefGoogle Scholar
  82. 82.
    Kobayashi H, Kawamoto S, Saga T, et al. Avidin-dendrimer-(1B4M-Gd)254: A tumor-targeting therapeutic agent for gadolinium neutron capture therapy of intraperitoneal disseminated tumor which can be monitored by MRI. Bioconjugate Chem, 2001, 12: 587–593CrossRefGoogle Scholar
  83. 83.
    Yan G P, Hu B, Liu M L, et al. Synthesis and evaluation of gadolinium complexes based on PAMAM as MRI contrast agents. J Pharm Pharmacol, 2005, 57: 351–357CrossRefGoogle Scholar
  84. 84.
    Du B, Zhou R J, Zhou R X. Synthesis of cyclic core dendritic polymer and its usage as a vector for transferring foreign DNA into human cells. Chin Chem Lett, 1998, 9: 635–638Google Scholar
  85. 85.
    Yan G P, Bottle S E, Zhuo R X, et al. Evaluation on dendritic gadolinium complexes as MRI contrast agents. J Bioact Compatible Polym, 2004, 19: 453–465CrossRefGoogle Scholar
  86. 86.
    Langereis S, Dirksen A, Hackeng T M, et al. Dendrimers and magnetic resonance imaging. New J Chem, 2007, 31: 1152–1160CrossRefGoogle Scholar
  87. 87.
    Lu Z R, Ye F R, Vaidya A. Polymer platforms for drug delivery and biomedical imaging. J Control Release, 2007, 122: 269–277CrossRefGoogle Scholar
  88. 88.
    Kim J H, Park K, Nam H Y, et al. Polymers for bioimaging. Prog Polym Sci, 2007, 32: 1031–1053CrossRefGoogle Scholar
  89. 89.
    Lee L J, Park K, Lee S, et al. New generation of multifunctional nanoparticles for cancer imaging and therapy. Adv Funct Mater, 2009, 19: 1553–1566CrossRefGoogle Scholar
  90. 90.
    Mulder A, Huskens J, Reinhoudt D N. Multivalency in supramolecular chemistry and nanofabrication. Org Biomol Chem, 2004, 2: 3409–3424CrossRefGoogle Scholar
  91. 91.
    Badjic J D, Nelson A, Cantrill S J, et al. Multivalency and cooperativity in supramolecular chemistry. Ace Chem Res, 2005, 38: 723–732CrossRefGoogle Scholar
  92. 92.
    Koyama Y, Talanov V S, Bernardo M, et al. A dendrimer-based nanosized contrast agent dual-labeled for magnetic resonance and optical fluorescence imaging to localize the sentinel lymph node in mice. J Magn Reson Imaging, 2007, 25: 866–871CrossRefGoogle Scholar
  93. 93.
    Dirksen A, Langereis S, de Waal B F M, et al. A supramolecular approach to multivalent target-specific MRI contrast agents for angiogenesis. Chem Commun, 2005: 2811–2813Google Scholar
  94. 94.
    Liu J Y, Zheng Y F. Development of magnetic resonance imaging contrast agents with PAMAM dendrimer cores. Mater Rev, 2007, 5: 69–72Google Scholar
  95. 95.
    Talanov V S, Regin O C A, Kobayashi H, et al. Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging. Nano Lett, 2006, 6: 1459–1463CrossRefGoogle Scholar
  96. 96.
    Wu P, Malkoch M, Hunt J N, et al. Multivalent, bifunctional dendrimers prepared by click chemistry. Chem Commun, 2005: 5775–5777Google Scholar
  97. 97.
    Lee C C, MacKay J A, Frechet J M, et al. Designing dendrimers for biological applications. Nat Biotechnol, 2005, 23: 1517–1526CrossRefGoogle Scholar
  98. 98.
    Bai J F, Gu W, Ye L. The potential application of dendrimers in medicine. Chemistry, 2001, 64: W119Google Scholar
  99. 99.
    Sadler K, Tam J P. Peptide dendrimers: Applications and synthesis. Rev Mol Biotechnol, 2002, 90: 157–354CrossRefGoogle Scholar
  100. 100.
    Turnbull W B, Stoddart J F. Design and synthesis of glycodendrimers. Rev Mol Biotechnol, 2002, 90: 231–255CrossRefGoogle Scholar
  101. 101.
    Dirksen A, Meijer E W, Adriaens W, et al. Strategy for the synthesis of multivalent peptide-based nonsymmetric dendrimers by native chemical ligation. Chem Commun, 2006, 1667–1669Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • GuoPing Yan
    • 1
  • ChaoWu Ai
    • 1
  • Liang Li
    • 1
  • RongFeng Zong
    • 1
  • Fan Liu
    • 1
  1. 1.School of Material Science and EngineeringWuhan Institute of TechnologyWuhanChina

Personalised recommendations