Advertisement

Chinese Science Bulletin

, Volume 55, Issue 25, pp 2855–2858 | Cite as

Photooxidation of Hantzsch 1,4-dihydropyridines by molecular oxygen

  • DengHui Wang
  • Qiang Liu
  • Bin Chen
  • LiPing Zhang
  • ChenHo Tung
  • LiZhu Wu
Article Organic Chemistry

Abstract

Photooxidation of Hantzsch 1,4-dihydropyridines (1,4-DHP, 1a–1d) by direct irradiation (λ > 300 nm) under an oxygen atmosphere has been carefully examined in this work. Spectroscopic and electrochemical studies demonstrate that photoinduced singlet electron transfer from 1,4-DHP to molecular oxygen occurs. The generated superoxide radical anion (O2 −·) is responsible for this typical photochemical oxidation.

Keywords

Hantzsch 1,4-dihydropyridines molecular oxygen photoinduced electron transfer superoxide (O2−·

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anniyappan M, Muralidharan D, Perumal P T. A novel application of the oxidizing properties of urea nitrate and peroxydisulfate-cobalt(II): Aromatization of NAD(P)H model Hantzsch 1,4-dihydropyridines. Tetrahedron, 2002, 58: 5069–5073CrossRefGoogle Scholar
  2. 2.
    Vanden Eynde J J, Mayence A. Synthesis and aromatization of Hantzsch 1,4-dihydropyridines under microwave irradiation. Molecules, 2003, 8: 381–391CrossRefGoogle Scholar
  3. 3.
    Han B, Liu Z, Liu Q, et al. An efficient aerobic oxidative aromatization of Hantzsch 1,4-dihydropyridines and 1,3,5-trisubstituted pyrazolines. Tetrahedron, 2006, 62: 2492–2496CrossRefGoogle Scholar
  4. 4.
    Mitchell P. Keilin’s respiratory chain concept and its chemiosmotic consequences. Science, 1979, 206: 1148–1159CrossRefGoogle Scholar
  5. 5.
    Heinemann S H, Terlau H, Stühmer W, et al. Calcium channel characteristics conferred on the sodium channel by single mutations. Nature, 1992, 356: 441–443CrossRefGoogle Scholar
  6. 6.
    Chen B, Peng M L, Wu L Z, et al. Switch between charge transfer and local excited states in 4-aminophenylsubstituted Hantzsch 1,4-dihydropyridine induced by pH change and transition metal ions. Photochem Photobiol Sci, 2006, 5: 943–947CrossRefGoogle Scholar
  7. 7.
    Fukuzumi S, Koumitsu S, Hironaka K, et al. Energetic comparison between photoinduced electron-transfer reactions from NADH model compounds to organic and inorganic oxidants and hydride-transfer reactions from NADH model compounds to p-benzoquinone derivatives. J Am Chem Soc, 1987, 109: 305–316CrossRefGoogle Scholar
  8. 8.
    Zhu X Q, Zhao B J, Cheng J P. Mechanisms of the oxidations of NAD(P)H model Hantzsch 1,4-dihydropyridines by nitric oxide and its donor N-methyl-N-nitrosotoluene-p-sulfonamide. J Org Chem, 2000, 65: 8158–8163CrossRefGoogle Scholar
  9. 9.
    Sambongi Y, Nitta H, Ichihashi K, et al. A novel water-soluble Hantzsch 1,4-dihydropyridine compound that functions in biological processes through NADH regeneration. J Org Chem, 2002, 67: 3499–3501CrossRefGoogle Scholar
  10. 10.
    Toniolo R, Narda F D, Bontempelli G, et al. An electroanalytical investigation on the redox properties of lacidipine supporting its anti-oxidant effect. Bio Electro Chem, 2000, 51: 193–200Google Scholar
  11. 11.
    Jin M Z, Yang L, Wu L M, et al. Novel photoinduced aromatization of Hantzsch 1,4-dihydropyridines. Chem Commun, 1998, 2451–2452Google Scholar
  12. 12.
    Kawashita Y, Hayashi M. Synthesis of heteroaromatic compounds by oxidative aromatization using an activated carbon/molecular oxygen system. Molecules, 2009, 14: 3073–3093CrossRefGoogle Scholar
  13. 13.
    Chai L Z, Zhao Y K, Sheng Q J, et al. Aromatization of Hantzsch 1,4-dihydropyridines and 1,3,5-trisubstituted pyrazolines with HIO3 and I2O5 in water. Tetrahedron Lett, 2006, 47: 9283–9285CrossRefGoogle Scholar
  14. 14.
    Han B, Liu Q, Liu Z G, et al. Metal-free catalytic aerobic aromatization of Hantzsch 1,4-dihydropyridines by N-hydroxyphthalimide. Synlett, 2005, 15: 2333–2334Google Scholar
  15. 15.
    Heravi M M, Behbahani F K, Oskooie H A, et al. Catalytic aromatization of Hantzsch 1,4-dihydropyridines by ferric perchlorate in acetic acid. Tetrahedron Lett, 2005, 46: 2775–2777CrossRefGoogle Scholar
  16. 16.
    Zhang D, Wu L Z, Zhou L, et al. Photocatalytic hydrogen production from Hantzsch 1,4-dihydropyridines by platinum(II) terpyridyl complexes in homogeneous solution. J Am Chem Soc, 2004, 126: 3440–3441CrossRefGoogle Scholar
  17. 17.
    Chen B, Wang D H, Wu L Z, et al. Synthesis of 3,5-dicyano-2,4,6-trimethylpyridine by photoinduced aromatization of 1,4-dihydro-3,5-dicyano-2,4,6-trimethylpyridine. Photograph Sci Photochem, 2007, 25: 161–164Google Scholar
  18. 18.
    Kurz J L, Hutton R, Westheimer F H. The photochemical reduction of bromotrichloromethane by derivatives of 1,4-dihydropyridine. J Am Chem Soc, 1961, 83: 584–588CrossRefGoogle Scholar
  19. 19.
    Mitsunobu O, Matsumoto S, Wada M, et al. Photooxidation of 1,4-dihydropyridines. Bull Chem Soc Jpn, 1972, 45: 1453–1457CrossRefGoogle Scholar
  20. 20.
    Biellmann J F, Callot H J, Pilgrim W R. Photolysis of 2,6-dimethyl-3,5-dicarboethox-1,4-dihydropyridine-4-carboxylic acid. Tetrahedron, 1972, 28: 5911–5921CrossRefGoogle Scholar
  21. 21.
    Memarian H R, Sadeghi M M, Aliyan H. Photochemistry of some 1,4-dihydropyridine derivatives: Part I. Indian J Chem, 1998, V37B: 219–223Google Scholar
  22. 22.
    Memarian H R, Sadeghi M M, Momeni A R. Photochemistry of some 1,4-dihydropyridine derivatives: Part II. Indian J Chem, 1999, V38B: 800–804Google Scholar
  23. 23.
    Memarian H R, Sadeghi M M, Momeni A R. Photchemistry of some 1,4-dihydropyridine deravitives: Part III-photosensitized oxidation. Indian J Chem, 2001, V40B: 508–509Google Scholar
  24. 24.
    Memarian H R, Sadeghi M M, Momeni A R, et al. Synthesis and photochemistry of novel 3,5-diacetyl-1,4-dihydropyridines. Monatshefte Für Chemie, 2002, 133: 661–667CrossRefGoogle Scholar
  25. 25.
    Memarian H R, Bagheri M, Döpp D. Synthesis and photochemistry of novel 3,5-diacetyl-1,4-dihydropyridines II. Monatshefte Für Chemie, 2004, 135: 833–838CrossRefGoogle Scholar
  26. 26.
    Fang X, Liu Y C, Li C. 9-Phenyl-10-methylacridinium: A highly efficient and reusable organocatalyst for mild aromatization of 1,4-dihydropyridines by molecular oxygen. J Org Chem, 2007, 72: 8608–8610CrossRefGoogle Scholar
  27. 27.
    Mair R D, Graupner A J. Determination of organic peroxides by iodine liberation procedures. Anal Chem, 1964, 36: 194CrossRefGoogle Scholar
  28. 28.
    Tung C H, Wu L Z, Zhang L P, et al. Supramolecular systems as microreactors: Control of product selectivity in organic phototransformation. Acc Chem Res, 2003, 36: 39–47CrossRefGoogle Scholar
  29. 29.
    Nancy A P, Luis J N. Nifedipine and nitrendipine reactivity toward singlet oxygen. J Photoch Photobio A: Chemistry, 2005, 175: 129–137CrossRefGoogle Scholar
  30. 30.
    Ou Z Z, Chen J R, Wang X S, et al. Synthesis of a water-soluble cyclodextrin modified hypocrellin and ESR study of its photodynamic therapy properties. New J Chem, 2002, 26: 1130–1136CrossRefGoogle Scholar
  31. 31.
    Ma J, Zhao J, Jiang L. Effect of structural modification on photodynamic activity of hypocrellins. Photoch Photobio, 2001, 74: 143–148CrossRefGoogle Scholar
  32. 32.
    Salazar R, Navarrete-Encina P A, Squella J A, et al. Reactivity of C4-indolyl substituted 1,4-dihydropyridines toward superoxide anion (O2 −·) in dimethylsulfoxide. J Phys Org Chem, 2009, 22: 569–577CrossRefGoogle Scholar
  33. 33.
    Ortiz M E, Núñez-Vergara L J, Squella J A. Relative reactivity of dihydropyridine derivatives to electrogenerated superoxide ion in DMSO solutions: A voltammetric approach. Pharmceut Res, 2003, 20: 292–296CrossRefGoogle Scholar
  34. 34.
    Ortiz M E, Núñez-Vergara L J, Camargo C, et al. Oxidation of Hantzsch 1,4-dihydropyridines of pharmacological significance by electrogenerated superoxide. Pharmaceut Res, 2004, 21: 428–435CrossRefGoogle Scholar
  35. 35.
    Bollo S, Jara-Ulloa P, Finger S, et al. Scanning electrochemical microscopy (SECM) study of superoxide generation and its reactivity with 1,4-dihydropyridines. J Electroanal Chem, 2005, 577: 235–242CrossRefGoogle Scholar
  36. 36.
    Raghuvanshi R S, Singh K N. Superoxide induced oxidative aromatization of Hantzsch 1,4-dihydropyridines. Indian J Chem, 2008, V47B: 1735–1738Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • DengHui Wang
    • 1
  • Qiang Liu
    • 1
  • Bin Chen
    • 1
  • LiPing Zhang
    • 1
  • ChenHo Tung
    • 1
  • LiZhu Wu
    • 1
  1. 1.Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations