Chinese Science Bulletin

, Volume 56, Issue 3, pp 325–330 | Cite as

Flexible dye-sensitized solar cell based on PCBM/P3HT heterojunction

  • GenTian Yue
  • JiHuai Wu
  • YaoMing Xiao
  • HaiFeng Ye
  • JianMing Lin
  • MiaoLiang Huang
Open Access
Article Materials Science

Abstract

Using blend heterojunction consisting of C60 derivatives [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and poly(3-hexylthiophene) (P3HT) as charge carrier transferring medium to replace I3 /I redox electrolyte, a novel flexible dye-sensitized solar cell (DSSC) is fabricated. The characterization of infrared spectra and ultraviolet-visible spectra shows that the PCBM/P3HT heterojunction has not only the absorption in ultraviolet light for PCBM, but also the absorption in visible and near infrared light for P3HT, which widens the photoelectric response range for DSSC. The influence of PCBM/P3HT mass ratio on the performance of the solar cell is discussed. Under 100 mW cm−2 (AM 1.5) simulated solar irradiation, the flexible solar cell achieves a light-to-electric energy conversion efficiency of 1.43%, open circuit voltage of 0.87 V, short circuit current density of 3.0 mA cm−2 and fill factor of 0.54.

Keywords

flexible solar cell dye-sensitized poly(3-hexylthiophene) [6,6]-phenyl-C61-butyric acid methyl ester 

References

  1. 1.
    O’Regan B, Gratzel M. A low-cost high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353: 737–740CrossRefGoogle Scholar
  2. 2.
    Lee K, Suryanarayanan V, Ho K. The influence of surface morphology of TiO2 coating on the performance of dye-sensitized solar cells. So1 Energy Mater So1 Cells, 2006, 90: 2398–2404CrossRefGoogle Scholar
  3. 3.
    Yu P, Zhu K, Norman A, et al. Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. Phys Chem B, 2006, 110: 25451–25454CrossRefGoogle Scholar
  4. 4.
    Dai S Y, Chen S H, Xiao S F, et al. Effect of temperature on DSC modules performance with different solvents in electrolyte (in Chinese). Chem J Chin Univ, 2005, 26: 1102–1105Google Scholar
  5. 5.
    Wu J, Lan Z, Wang D, et al. Gel polymer electrolyte based on poly (acrylonitrile-co-styrene) and a novel organic iodide salt for quasi- solid state dye-sensitized solar cell. Electrochim Acta, 2006, 51: 4243–4249CrossRefGoogle Scholar
  6. 6.
    Lan Z, Wu J, Lin J, et al. Quasi-solid state dye-sensitized solar cells with a novel efficient absorbent for liquid electrolyte based on PAA-PEG hybrid. J Power Sources, 2007, 164: 921–925CrossRefGoogle Scholar
  7. 7.
    Lindstrom H, Holmberg A, Magnusson E, et al. A new method to make dye-sensitized nanocrystalline solar cells at room temperature. J Photochem Photobiol A: Chem, 2001, 145: 107–112CrossRefGoogle Scholar
  8. 8.
    Longo C, Freitas J, DePaoli M. Performance and stability of TiO2/dye solar cells assembled with flexible electrodes and a polymer electrolyte. J Photochem Photobiol A: Chem, 2003, 159: 33–39CrossRefGoogle Scholar
  9. 9.
    Sariciftci N. Polymeric photovoltaic materials: Current opinion in solid state and materials. Science, 1999, 4: 373–378Google Scholar
  10. 10.
    Thompson B, Frechet J. Organic photovoltaics-polymer-fullerene composite solar cells. Angew Chem Int Ed, 2008, 47: 58–77CrossRefGoogle Scholar
  11. 11.
    Gunes S, Neugebauer H, Sariciftci N. Conjugated polymer-based organic solar cells. Chem Rev, 2007, 107: 1324–1338CrossRefGoogle Scholar
  12. 12.
    Zhou Y, Zhang F, Tvingstedt K, et al. Multifolded polymer solar cells on flexible substrates. Appl Phys Lett, 2008, 92: 233308CrossRefGoogle Scholar
  13. 13.
    Wang E, Wang L, Lan L, et al. High-performance polymer heterojunction solar cells of a polysilafluorene derivative. Appl Phys Lett, 2008, 92: 033307CrossRefGoogle Scholar
  14. 14.
    Hou J, Tan Z, Yan Y, et al. Synthesis and photovoltaic properties of two-dimensional conjugated polythiophenes with bi(thienylenevinylene) side chains. J Am Chem Soc, 2006, 128: 4911–4916CrossRefGoogle Scholar
  15. 15.
    Muhlbacher D, Scharber M, Morana M, et al. High photovoltaic performance of a low-bandgap polymer. Adv Mater, 2006, 18: 2884–2889CrossRefGoogle Scholar
  16. 16.
    Ma W, Yang C, Gong X, et al. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater, 2005, 15: 1617–1622CrossRefGoogle Scholar
  17. 17.
    Li G, Shrotriya V, Huang J S, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater, 2005, 4: 864–868CrossRefGoogle Scholar
  18. 18.
    Alem S, de Bettignies R, Nunzi J, et al. Efficient polymer-based interpenetrated network photovoltaic cells. App1 Phys Lett, 2004, 84: 2178–2180CrossRefGoogle Scholar
  19. 19.
    Li G, Shrotriya V, Huang J, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater, 2005, 4: 864–868CrossRefGoogle Scholar
  20. 20.
    Zhang D, Downing J, Knorr F, et al. Room-temperature preparation of nanocrystalline TiO2 films and the influence of surface properties on dye-sensitized solar energy conversion. J Phys Chem B, 2006, 110: 21890–21898CrossRefGoogle Scholar
  21. 21.
    Wu J, Lan Z, Lin J, et al. A novel thermosetting gel electrolyte for stable quasi-solid-state dye-sensitized solar cells. Adv Mater, 2007, 19: 4006–4011CrossRefGoogle Scholar
  22. 22.
    Wu J, Hao S, Lan Z, et al. An all-solid-state dye-sensitized solar cell-based poly(N-alkyl-4-vinyl- pyridine iodide) electrolyte with efficiency of 5.64%. J Am Chem Soc, 2008, 130: 11568–11569CrossRefGoogle Scholar
  23. 23.
    Gutierrez T, Zumeta I, Vigil E, et al. New low-temperature preparation method of the TiO2 porous photoelectrode for dye-sensitized solar cells using UV irradiation. J Photochem Photobiol A: Chem, 2005, 175: 165–171CrossRefGoogle Scholar
  24. 24.
    Nemoto J, Sakata M, Hoshi T, et al. All-plastic dye-sensitized solar cell using a polysaccharide film containing excess redox electrolyte solution. J Electroanal Chem, 2007, 599: 23–30CrossRefGoogle Scholar
  25. 25.
    Kratschmer W, Lamb L, Fostiropoulos K, et al. Solid C60: A new form of carbon. Nature, 1990, 347: 354–358CrossRefGoogle Scholar
  26. 26.
    Zhou E, Tan Z, Huo L, et al. Effect of branched conjugation structure on the optical, electrochemical, hole mobility, and photovoltaic properties of polythiophenes. Phys Chem B, 2006, 110: 26062–26067CrossRefGoogle Scholar
  27. 27.
    Ibrahima M, Ambacher O. Effects of solvent and annealing on the improved performance of solar cells based on poly(3-hexylthiophene): Fullerene. Appl Phys Lett, 2005, 86: 201120CrossRefGoogle Scholar
  28. 28.
    Sun S G, Xu Y Q, Shi L, et a1. Nanocrystalline photovoltaic solar cells and photosensitive dyes (in Chinese). Dyes Color, 2003, 40: 311–313Google Scholar
  29. 29.
    Yang X, Van Duren J, Loos J, et al. Morphology and thermal stability of the active layer in poly (p-phenylenevinylene) /methanofullerene plastic photovoltaic devices. Macromol, 2004, 37: 2151–2158CrossRefGoogle Scholar
  30. 30.
    Van Duren J, Yang X, Janssen R, et al. Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solarcell performance. Adv Funct Mater, 2004, 14: 425–434CrossRefGoogle Scholar
  31. 31.
    Liang Y, Wu Y, Feng D, et al. Development of new semiconducting polymers for high performance solar cells. J Am Chem Soc, 2009, 131: 56–57CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • GenTian Yue
    • 1
  • JiHuai Wu
    • 1
  • YaoMing Xiao
    • 1
  • HaiFeng Ye
    • 1
  • JianMing Lin
    • 1
  • MiaoLiang Huang
    • 1
  1. 1.Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, The Key Laboratory for Functional Materials of Fujian Higher Education, Institute of Materials Physical ChemistryHuaqiao UniversityQuanzhouChina

Personalised recommendations