Chinese Science Bulletin

, Volume 55, Issue 15, pp 1511–1519

Whole fossil plants of Ephedra and their implications on the morphology, ecology and evolution of Ephedraceae (Gnetales)

Articles Geology

Abstract

Although there are many reports of fossil Ephedraceae, whole plant fossil record remains rare. Due to a lack of trust on partially preserved fossil materials, scholars working on molecular clock proposed a recent origin of Ephedra and cast doubt on the earlier origin time of Ephedraceae. To better the understanding on this interesting group, here we report whole plants of Ephedra hongtaoi sp. nov. (Ephedraceae, Gnetales) from the Yixian Formation (Early Cretaceous) in western Liaoning, China. These whole plants of Ephedra demonstrate clearly the characters of Ephedra, including shrubby growth habit, decussate branching pattern, and terminal ovuliferous unit with micropylar tube. The whole-plant preservation of the fossils provides more convincing fossil evidence of Early Cretaceous Ephedra, helps to resolve the controversy over the origin time of Ephedra, and sheds light on the whole plant morphology, growth habit, ecology and evolution of Ephedraceae.

Keywords

fossil Gnetales whole plant Ephedra hongtaoi Cretaceous Liaoning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crane P R. Phylogenetic analysis of seed plants and the origin of angiosperms. Ann Miss Bot Gard, 1985, 72: 716–793CrossRefGoogle Scholar
  2. 2.
    Doyle J A, Donoghue M J. Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. Bot Rev, 1986, 52: 321–431CrossRefGoogle Scholar
  3. 3.
    Huang J, Price R A. Estimation of the age of extant Ephedra using chloroplast rbcL sequence data. Mol Biol Evol, 2003, 20: 435–440CrossRefGoogle Scholar
  4. 4.
    Qiu Y L, Li L B, Wang B, et al. A nonflowering land plant phylogeny inferred from nucleotide sequences of seven chloroplast, mitochondrial, and nuclear genes. Intl J Plant Sci, 2007, 168: 691–708CrossRefGoogle Scholar
  5. 5.
    Doyle J A. Integrating molecular phylogenetic and paleobotanical evidence on origin of the flower. Intl J Plant Sci, 2008, 169: 816–843CrossRefGoogle Scholar
  6. 6.
    Chamberlain C J. Gymnosperms, Structure and Evolution. New York: Johnson Reprint Corporation, 1957. 1–484Google Scholar
  7. 7.
    Bierhorst D W. Morphology of Vascular Plants. New York: MacMillan Company, 1971. 1–560Google Scholar
  8. 8.
    Crane P R, Upchurch G R J. Drewria potomacensis gen. et sp. nov., an Early Cretaceous member of Gnetales from the Potomac Group of Virginia. Amer J Bot, 1987, 74: 1722–1736CrossRefGoogle Scholar
  9. 9.
    Wu X W, He Y L, Mei S W. Discovery of Ephedrites from the Lower Jurassic Xiaomeigou Formation, Qinghai (in Chinese). Acta Palaeobot Palynol Sin, 1986, 1: 13–21Google Scholar
  10. 10.
    Crane P R. The fossil history of Gnetales. Intl J Plant Sci, 1996, 157: S50–S57CrossRefGoogle Scholar
  11. 11.
    Rydin C, Mohr B, Friis E M. Cratonia cotyledon gen. et sp. nov.: A unique Cretaceous seedling related to Welwitschia. Proc Roy Soc B, 2003, 270: S29–S32CrossRefGoogle Scholar
  12. 12.
    Tao J R, Yang Y. Alloephedra xingxueii gen. et sp. nov., an Early Cretaceous member of Ephedraceae from Dalazi Formation in Yanji Basin, Jilin Province of China (in Chinese). Acta Palaeontol Sin, 2003, 42: 208–215Google Scholar
  13. 13.
    Rydin C, Pedersen K J, Friis E M. On the evolutionary history of Ephedra: Cretaceous fossils and extant molecules. Proc Nat Acad Sci USA, 2004, 101: 16571–16576CrossRefGoogle Scholar
  14. 14.
    Dilcher D L, Bernardes-De-Oliveira M E, Pons D, et al. Welwitschiaceae from the Lower Cretaceous of northeastern Brazil. Amer J Bot, 2005, 92: 1294–1310CrossRefGoogle Scholar
  15. 15.
    Yang Y, Geng B-Y, Dilcher D L, et al. Morphology and affinities of an Early Cretaceous Ephedra (Ephedraceae) from China. Amer J Bot, 2005, 92: 231–241CrossRefGoogle Scholar
  16. 16.
    Rydin C, Pedersen K R, Crane P R, et al. Former diversity of Ephedra (Gnetales): Evidence from Early Cretaceous seeds from Portugal and North America. Ann Bot, 2006, 98: 123–140CrossRefGoogle Scholar
  17. 17.
    Ash S R. Late Triassic plants from the Chinle Formation in northeastern Arizona. Palaeontology, 1972, 15: 598–618Google Scholar
  18. 18.
    Krassilov V A. New floral structure from the Lower Cretaceous of Lake Baikal area. Rev Palaeobot Palyn, 1986, 47: 9–16CrossRefGoogle Scholar
  19. 19.
    Van Konijnenburg-Van Cittert J H A. An enigmatic Liassic microsporophyll, yielding Ephedripites pollen. Rev Palaeobot Palyn, 1992, 71: 239–254CrossRefGoogle Scholar
  20. 20.
    Friis E M, Pedersen K R. Eucommiitheca hirsuta, a new pollen organ with Eucommiidites pollen from the Early Cretaceous of Portugal. Grana, 1996, 35: 104–112CrossRefGoogle Scholar
  21. 21.
    Wang Z Q. A new Permian gnetalean cone as fossil evidence for supporting current molecular phylogeny. Ann Bot, 2004, 95: 281–288CrossRefGoogle Scholar
  22. 22.
    Wu S Q. A preliminary study of the Jehol flora from the western Liaoning (in Chinese). Palaeoworld, 1999, 11: 7–57Google Scholar
  23. 23.
    Guo S X, Wu X W. Ephedrites from latest Jurassic Yixian Formation in western Liaoning, northeast China (in Chinese). Acta Palaeontol Sin, 2000, 39: 81–91Google Scholar
  24. 24.
    Huang J, Giannasi D E, Price R A. Phylogenetic relationships in Ephedra (Ephedraceae) inferred from chloroplast and nuclear DNA sequences. Mol Phyl Evol, 2005, 35: 48–59CrossRefGoogle Scholar
  25. 25.
    Wang Q B, Wang L, Zhou R C, et al. Phylogenetic position of Ephedra rhytidosperma, a species endemic to China: Evidence from chloroplast and ribosomal DNA sequences. Chinese Sci Bull, 2005, 50: 2901–2904CrossRefGoogle Scholar
  26. 26.
    Won H, Renner S S. Dating dispersal and radiation in the gymnosperm Gnetum (Gnetales)-clock calibration when outgroup relationships are uncertain. Syst Biol, 2006, 55: 610–622CrossRefGoogle Scholar
  27. 27.
    Kvacek Z. Whole-plant reconstructions in fossil angiosperm research. Intl J Plant Sci, 2008, 169: 918–927CrossRefGoogle Scholar
  28. 28.
    Rothwell G W, Crepet W L, Stockey R A. Is the anthophyte hypothesis alive and well? New evidence from the reproductive structures of Bennettitales. Amer J Bot, 2009, 96: 296–322CrossRefGoogle Scholar
  29. 29.
    Leng Q, Friis E M. Sinocarpus decussatus gen. et sp. nov., a new angiosperm with basally syncarpous fruits from the Yixian Formation of Northeast China. Plant Syst Evol, 2003, 241: 77–88CrossRefGoogle Scholar
  30. 30.
    Leng Q, Friis E M. Angiosperm leaves associated with Sinocarpus Leng et Friis infructescences from the Yixian Formation (mid-Early Cretaceous) of NE China. Plant Syst Evol, 2006, 262: 173–187CrossRefGoogle Scholar
  31. 31.
    Sun G, Dilcher D L, Zheng S-L, et al. In search of the first flower: A Jurassic angiosperm, Archaefructus, from Northeast China. Science, 1998, 282: 1692–1695CrossRefGoogle Scholar
  32. 32.
    Sun G, Zheng S, Dilcher D, et al. Early Angiosperms and Their Associated Plants from Western Liaoning, China (in Chinese and English). Shanghai: Shanghai Technology & Education Press, 2001. 1–227Google Scholar
  33. 33.
    Swisher C C, Wang Y Q, Wang X L, et al. Cretaceous age for the feathered dinosaurs of Liaoning. Nature, 1999, 400: 58–61CrossRefGoogle Scholar
  34. 34.
    Li J, Batten D J. Palynological evidence of an Early Cretaceous age for the Yixian Formation at Sihetun, western Liaoning, China. Cret Res, 2007, 28: 333–338CrossRefGoogle Scholar
  35. 35.
    Dilcher D L, Sun G, Ji Q, et al. An early infructescence Hyrcantha decussata (comb. nov.) from the Yixian Formation in northeastern China. Proc Nat Acad Sci USA, 2007, 104: 9370–9374Google Scholar
  36. 36.
    Rydin C, Wu S, Friis E. Liaoxia Cao et S.Q. Wu (Gnetales): Ephedroids from the Early Cretaceous Yixian Formation in Liaoning, northeastern China. Plant Syst Evol, 2006, 262: 239–265CrossRefGoogle Scholar
  37. 37.
    Fu L K, Yu Y, Riedl H. Ephedraceae. In: Wu Z Y, Raven P H. eds. Flora of China. Beijing: Science Press, 1999. 97–101Google Scholar
  38. 38.
    Pedersen K R, Crane P R, Friis E M. Pollen organs and seeds with Eucommiidites pollen. Grana 1989, 28: 279–294CrossRefGoogle Scholar
  39. 39.
    Tekleva M V, Krassilov V A. Comparative pollen morphology and ultrastructure of modern and fossil gnetophytes. Rev Palaeobot Palyn, 2009, 156: 130–138CrossRefGoogle Scholar
  40. 40.
    Yang Y. Asymmetrical development of biovulate cones resulting in uniovulate cones in Ephedra rhytiodosperma (Ephedraceae). Plant Syst Evol, 2007, 264: 175–182CrossRefGoogle Scholar
  41. 41.
    Fürsich F T, Sha J, Jiang B, et al. High resolution palaeoecological and taphonomic analysis of Early Cretaceous lake biota, western Liaoning (NE China). Palaeogeog Palaeoclim Palaeoecol, 2007, 253: 434–457CrossRefGoogle Scholar
  42. 42.
    Li Y, Sha J, Wang Q, et al. Lacustrine tempestite litho- and biofacies in the Lower Cretaceous Yixian Formation, Beipiao, western Liaoning, northeast China. Cret Res, 2007, 28: 194–198CrossRefGoogle Scholar
  43. 43.
    Xing D H, Sun C L, Sun Y W, et al. New knowledge on Yixian Formation (in Chinese). Acta Geosci Sin, 2005, 26: 25–30Google Scholar
  44. 44.
    Zhang L, Gong E, Xu D, et al. Sedimentary facies of the Yixian Formation of Lower Cretaceous in Sihetun Basin of Beipiao, Liaoning Province (in Chinese). J Palaeogeo, 2005, 7: 70–78Google Scholar

Copyright information

© Science in China Press and Springer Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Nanjing Institute of Geology and PalaeontologyChinese Academy of SciencesNanjingChina
  2. 2.Fairy Lake Botanical GardenShenzhenChina
  3. 3.Shenyang Institute of Geology and Mineral ResourcesShenyangChina

Personalised recommendations