Chinese Science Bulletin

, Volume 55, Issue 16, pp 1643–1656 | Cite as

Magma mixing in upper mantle: Evidence from high Mg# olivine hosted melt inclusions in MORBs near East Pacific Rise 13°N

  • GuoLiang ZhangEmail author
  • ShaoQing Jiang
  • HeGen Ouyang
  • DaiGeng Chen
  • XueBo Yin
  • XiaoYuan Wang
  • XiaoMei Wang
  • ZhiGang ZengEmail author
Articles Geology


Early formed high-Mg# olivine phenocrysts during evolution of MORB magmas usually host melt inclusions, which record important information about the early-stage evolution of magma. Five MORB samples from near East Pacific Rise (EPR) 13°N vary little in K/Ti (0.07–0.12), Tb/Lu (1.72–1.84) and Sm/Nd (0.310–0.332) and have similar REEs patterns, indicating that depleted upper mantle has similar mineral composition. Sixty-five initial melt inclusions derived by correcting olivine fractionation and “FeO-Loss” show averagely higher MgO contents than their host rocks. Melt inclusions have higher CaO/Al2O3 ratios than their host rocks, and these CaO/Al2O3 ratios are positively and negatively correlated with MgO and Na2O respectively, suggesting that these magmas have experienced high pressure crystallization of clinopyroxene. Average crystallization pressure, which is calculated based on the pressure dependence of clinopyroxene crystallization, is 0.83±0.25 GPa, and implys that these melt inclusions are averagely trapped in mantle depth of ∼24 km. These melt inclusions show negative correlations of Ca8/Al8 and Na8 with Fe8, and wider ranges of Ca8/Al8, Na8, Fe8 and K/Ti than their host rocks, suggesting that these melt inclusions formed by mixing magmas of different melting degrees and depths. According to the average value and ranges of Ca8/Al8, Na8, Fe8 and K/Ti, these magmas would necessitate other mixing ends in shallow crust except in upper mantle. The compositional diversity of melt inclusions in MORBs phenocrysts cannot always be used to indicate magma mixing and crystallization in shallow crust, and melt inclusions in high Mg# olivine formed under mantle pressure must be excluded in study of the magma process at crustal level. This study shows that, in EPR, MORBs have experienced mixing of magmas formed by different melting degrees and depths in the mantle.


olivine melt inclusion MORB magma mixing upper mantle East Pacific Rise 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stolper E. A phase diagram for mid-ocean ridge basalts: Preliminary results and implications for petrogenesis. Contrib Mineral Petrol, 1980, 74: 13–27CrossRefGoogle Scholar
  2. 2.
    Blake S, Rogers N. Magma differentiation rates from (226Ra/230Th) and the size and power out put of magma chambers. Earth Planet Sci Lett, 2005, 236: 654–669CrossRefGoogle Scholar
  3. 3.
    Kinzler R, Grove T. Primary magmas of mid-ocean ridge basalt 2. applications. J Geophys Res, 1992, 97: 6907–6926CrossRefGoogle Scholar
  4. 4.
    Sinton J M, Detrick R S. Mid-ocean ridge magma chambers. J Geophys Res, 1992, 97: 197–216CrossRefGoogle Scholar
  5. 5.
    Zhang S M, Wang F Z. Basalts action on research geosphere deep course and structural setting (in Chinese). Adv Earth Sci, 2002, 17: 685–692Google Scholar
  6. 6.
    Herzberg C. Partial crystallization of mid-ocean ridge basalts in the crust and mantle. J Petrol, 2004, 45: 2389–2405CrossRefGoogle Scholar
  7. 7.
    Rubin K H, Sinton J M. Inferences on mid-ocean ridge thermal and magmatic structure from MORB compositions. Earth Planet Sci Lett, 2007, 260: 257–276CrossRefGoogle Scholar
  8. 8.
    Bach W, Hegner E, Erzinger J, et al. Chemical and isotopic variations along the superfast spreading East Pacific Rise from 6° to 30°S. Contrib Mineral Petrol, 1994, 116: 365–380CrossRefGoogle Scholar
  9. 9.
    Zheng J P. Comparison of mantle-derived matierals from different spatiotemporal settings: Implications for destructive and accretional processes of the North China Craton. Chinese Sci Bull, 2009, 54: 3397–3416CrossRefGoogle Scholar
  10. 10.
    Sleep N H. Tapping of magmas from ubiquitous mantle heterogeneities: An alternative to mantle plumes? J Geophys Res, 1984, 89: 10029–10041CrossRefGoogle Scholar
  11. 11.
    Kelemen P B, Koga K, Shimizu N. Geochemistry of gabbro sills in the crust-mantle transition zone of the Oman ophiolite: Implications for the origin of the oceanic lower crust. Earth Planet Sci Lett, 1997, 146: 475–488CrossRefGoogle Scholar
  12. 12.
    Wagner T P, Grove T L. Melt/harzburgite reaction in the petrogenesis of tholeiitic magma from Kilauea volcano, Hawaii. Contrib Mineral Petrol, 1998, 131: 1–12CrossRefGoogle Scholar
  13. 13.
    Stevenson D S, Blake S. Modelling the dynamics and thermodynamics of volcanic degassing. Bull Volcanol, 1998, 60: 307–317CrossRefGoogle Scholar
  14. 14.
    Kelemen P B, Dick H J B. Focused melt flow and localized deformation in the upper mantle: Juxtaposition of replacive dunite and ductile shear zones in the Josephine peridotites, SW Oregon. J Geophys Res, 1995, 100: 423–438CrossRefGoogle Scholar
  15. 15.
    Kelemen P B, Shimizu N, Salters V J M. Focussed flow of melt in the upper mantle: Extraction of MORB beneath oceanic spreading ridges. Mineral Mag, 1994, 58: 466–467CrossRefGoogle Scholar
  16. 16.
    Scarrow J H, Cox K G. Basalts generated by decompressive adiabatic melting of a mantle plume: A case study from the Isle of skye, NW Scotland. J Petrol, 1995, 36: 3–22Google Scholar
  17. 17.
    Sleep N H. Hotspot volcanism and mantle plumes. Annu Rev Earth Planet Sci, 1992, 20: 19–43CrossRefGoogle Scholar
  18. 18.
    Niu Y L, Langmuir C H, Kinzler R J, The origin of abyssal peridotites: A new perspective. Earth Planet Sci Lett, 1997, 152: 251–265CrossRefGoogle Scholar
  19. 19.
    Anderson A T. Magma mixing: Petrological processes and volcanological tools. J Volcanol Geoth Res, 1976, 1: 3–33CrossRefGoogle Scholar
  20. 20.
    Dungan M A, Rhodes J M. Residual glasses and melt inclusions in basalts from DSDP legs 45 and 46: Evidence for magma mixing. Contrib Mineral Petrol, 1978, 67: 417–431CrossRefGoogle Scholar
  21. 21.
    Sobolev A V. Melt inclusions in minerals as a source of principal petrologic information. Petrol, 1996, 4: 228–239Google Scholar
  22. 22.
    Gaetani G A, Watson E B. Open system behavior of olivine-hosted melt inclusions. Earth Planet Sci Lett, 2000, 183: 27–41CrossRefGoogle Scholar
  23. 23.
    Schiano P. Primitive mantle magmas recorded as silicate melt inclusions in igneous minerals. Earth-Sci Rev, 2003, 63: 121–144CrossRefGoogle Scholar
  24. 24.
    Eason D, Sinton J. Origin of high-Al N-MORB by fractional crystallization in the upper mantle beneath the Galápagos Spreading Center. Earth Planet Sci Lett, 2006, 252: 423–436CrossRefGoogle Scholar
  25. 25.
    Falloon T J, Danyushevsky L V, Ariskin A, et al. The application of olivine geothermometry to infer crystallization temperatures of parental liquids: Implications for the temperature of MORB magmas. Chem Geol, 2007, 241: 207–233CrossRefGoogle Scholar
  26. 26.
    Sours-Page R, Nielsen R L, Batiza R. Melt inclusions as indicators of parental magma diversity on the northern East Pacific Rise. Chem Geol, 2002, 183: 237–261CrossRefGoogle Scholar
  27. 27.
    Choukroune P, Francheteau J, Hekinian R. Tectonics of the East Pacific Rise near 12°50′N: A submersible study. Earth Planet Sci Lett, 1984, 68: 115–127CrossRefGoogle Scholar
  28. 28.
    Ballard R D, Hekinian R, Francheteau J. Geological setting of hydrothermal activity at 12°50′N on the East Pacific Rise: A submersible study. Earth Planet Sci Lett, 1984, 69: 176–186CrossRefGoogle Scholar
  29. 29.
    Zeng Z G, Wang X Y, Zhang G L, et al. Formation of Fe-oxyhydroxides from the East Pacific Rise near latitude 13°N: Evidence from mineralogical and geochemical data. Sci China Ser D-Earth Sci, 2008, 51: 206–215CrossRefGoogle Scholar
  30. 30.
    Zhang G L, Zeng Z G, Yin X B, et al. Periodically mixing of MORB Magmas near East Pacific Rise 13°N: Evidence from modeling and zoned plagioclase PHENOCRYSTS. Sci China Ser D-Earth Sci, 2008, 51: 1786–1801CrossRefGoogle Scholar
  31. 31.
    Sakai H, Marais D J D, Ueda A, et al. Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts. Geochem Cosmoch Acta, 1984, 48: 2433–2441CrossRefGoogle Scholar
  32. 32.
    Saal A E, Hauri E H, Langmuir C H, et al. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature, 2002, 419: 451–455CrossRefGoogle Scholar
  33. 33.
    le Roux P J, Shirey S B, Hauri E H, et al. The effects of variable sources, processes and contaminants on the composition of northern EPR MORB (8°–10°N and 12°–14°N): Evidence from volatiles (H2O, CO2, S) and halogens (F,Cl). Earth Planet Sci Lett, 2006, 251: 209–231CrossRefGoogle Scholar
  34. 34.
    Ford C E, Russell D G, Craven JA, et al. Olivine-liquid equilibria: Temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn. J Petrol, 1983, 24: 256–265Google Scholar
  35. 35.
    Niu Y L, Batiza R. An empirical method for calculating melt compositions produced beneath mid-ocean ridges: Application for axis and offaxis (seamounts) melting. J Geophys Res, 1991, 96: 21753–21777CrossRefGoogle Scholar
  36. 36.
    Niu Y L, Waggoner D G, Sinton J M, et al. Mantle source heterogeneity and melting processes beneath seafloor spreading centres: The East Pacific Rise, 18°–19°S. J Geophys Res, 1996, 101: 27711–27733CrossRefGoogle Scholar
  37. 37.
    Hékiniana R, Francheteaub J, Armijoc R, et al. Petrology of the Easter microplate region in the South Pacific. J Volcanol Geoth Res, 1996, 72: 259–289CrossRefGoogle Scholar
  38. 38.
    Taylor B, Martinez F. Back-arc basin basalt systematics. Earth Planet Sci Lett, 2003, 210: 481–497CrossRefGoogle Scholar
  39. 39.
    Ligi M, Bonatti E, Cipriani A, et al. Water-rich basalts at mid-oceanridge cold spots. Nature, 2005, 434: 66–69CrossRefGoogle Scholar
  40. 40.
    Hirose K, Kushiro I. Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet Sci Lett, 1993, 114: 477–489CrossRefGoogle Scholar
  41. 41.
    Macdougall J D, Lugmair G W. Sr and Nd isotopes in basalts from the East Pacific Rise: Significance for mantle heterogeneity. Earth Planet Sci Lett, 1986, 77: 273–284CrossRefGoogle Scholar
  42. 42.
    Niu Y L, Regelous M, Wendt I J, et al. Geochemistry of near-EPR seamounts: Importance of source vs. process and the origin of enriched mantle component. Earth Planet Sci Lett, 2002, 199: 327–345CrossRefGoogle Scholar
  43. 43.
    Castillo P R, Klein E, Bender J, et al. Petrology and Sr, Nd, and Pb isotope geochemistry of mid-ocean ridge basalt glasses from the 11°45′N to 15°00′N segment of the East Pacific Rise. Geochem Geophys Geosys, 2000, doi: 10.1029/1999GC000024Google Scholar
  44. 44.
    Chaussidon M, Sheppard S M F, Hydrogen M A. Hydrogen, sulphur and neodymium isotope variations in the mantle beneath the EPR at 12°50′N. J Geochem Soc, 1991, 3: 325–337Google Scholar
  45. 45.
    Hamelin B, Dupper B, Allegre C J. Lead-Strontium isotopic variations along the East Pacific Rise and the mid-Atlantic ridge: A comparative study. Earth Planet Sci Lett, 1984, 67: 340–350CrossRefGoogle Scholar
  46. 46.
    Caroff M, Fleutelot C. The north-south propagating spreading center of the North Fiji Basin. Modeling of the geochemical evolution in periodically replenished and tapped magma chambers. Mineral Petrol, 2003, 79: 203–224CrossRefGoogle Scholar
  47. 47.
    Danyushevsky L V, McNeill A W, Sobolev A V. Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: An overview of techniques, advantages and complications. Chem Geol, 2002, 183: 5–24CrossRefGoogle Scholar
  48. 48.
    Kress V C, Ghiorso M S. Thermodynamic modelling of post-entrapment crystallization in igneous phases. J Volcanol Geoth Res, 2004, 137: 247–260CrossRefGoogle Scholar
  49. 49.
    Danyushevsky L V. The effect of small amounts of H2O on crystallisation of mid-ocean ridge and backarc basin magmas. J Volcanol Geoth Res, 2001, 110: 265–280CrossRefGoogle Scholar
  50. 50.
    Zhang G L, Zeng Z G, Yin X B, et al. Deep fractionation of clinopyroxene in the East Pacific Rise 13°N: Evidence from high MgO MORB and melt inclusions. Acta Geol Sin-Engl, 2009, 83: 266–277CrossRefGoogle Scholar
  51. 51.
    Danyushevsky L V, Della-Pasqua F N, Sokolov S. Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: Petrological implications. Contrib Mineral Petrol, 2000, 138: 68–83CrossRefGoogle Scholar
  52. 52.
    Gaillard F, Scaillet B, Pichavant M, et al. The effect of water and fO2 on the ferric-ferrous ratio of silicic melts. Chem Geol, 2001, 174: 255–273CrossRefGoogle Scholar
  53. 53.
    Ulmer P. Partial melting in the mantle wedge-the role of H2O in the genesis of mantle-derived ‘arc-related’ magmas. Phys Earth Planet Int, 2001, 127: 215–232CrossRefGoogle Scholar
  54. 54.
    Müntener O, Kelemen P B, Grove T L. The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: An experimental study. Contrib Mineral Petrol, 2001, 141: 643–658Google Scholar
  55. 55.
    Medard E, McCammon C A, Barr J A, et al. Oxygen fugacity, temperature reproducibility, and H2O contents of nominally anhydrous piston-cylinder experiments using graphite capsules. Am Mineral, 2008, 93: 1838–1844CrossRefGoogle Scholar
  56. 56.
    Berndt J, Koepke J, Holtz F. An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200 MPa. J Petrol, 2005, 46: 135–167CrossRefGoogle Scholar
  57. 57.
    Yang H J, Kinzler R J, Grove T L. Experiments and models of anhydrous basaltic olivine-plagioclase-augite saturated melts from 0.001 to 10 kbar. Contrib Mineral Petrol, 1996, 124: 1–18CrossRefGoogle Scholar
  58. 58.
    Michael P J, Chase R L. The influence of primary magma composition, H2O and pressure on Mid-Ocean Ridge basalt differentiation. Contrib Mineral Petrol, 1987, 96: 245–263CrossRefGoogle Scholar
  59. 59.
    Iyer S D, Ray D. Structure, tectonic and petrology of mid-oceanic ridges and the Indian scenario. Curr Sci, 2003, 85: 277–289Google Scholar
  60. 60.
    Michael P J, Cornell W C. Influence of spreading rate and magma supply on crystallization and assimilation beneath midocean ridges: Evidence from chlorine and major element chemistry of mid-ocean ridge basalts. J Geophys Res, 1998, 103: 18325–18356CrossRefGoogle Scholar
  61. 61.
    Yang H J, Frey F A, Clague D A, et al. Mineral chemistry of submarine lavas from Hilo Ridge, Hawaii: Implications for magmatic processes within Hawaiian rift zones. Contrib Mineral Petrol, 1999, 135: 355–372CrossRefGoogle Scholar
  62. 62.
    le Roux P J, le Roex A P, Schilling J G. Crystallization processes beneath the southern Mid-Atlantic Ridge (40–55°S): Evidence for high-pressure initiation of crystallization. Contrib Mineral Petrol, 2002, 142: 582–602Google Scholar
  63. 63.
    Wallace P J. Volatiles in submarine basaltic glasses from the Northern Kerguelen Plateau (ODP Site 1140): Implications for source region compositions, magmatic processes, and plateau subsidence. J Petrol, 2002, 43: 1311–1326CrossRefGoogle Scholar
  64. 64.
    Villiger S, Ulmer P, Müntener O. Equilibrium and fractional Crystallization experiments at 0.7 GPa: The effect of pressure on phase relations and liquid compositions of tholeiitic magmas. J Petrol, 2007, 48: 159–184CrossRefGoogle Scholar
  65. 65.
    Kelley D F, Barton M. Pressures of crystallization of Icelandic magmas. J Petrol, 2008, 49: 465–492CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • GuoLiang Zhang
    • 1
    • 2
    Email author
  • ShaoQing Jiang
    • 3
  • HeGen Ouyang
    • 1
    • 2
  • DaiGeng Chen
    • 4
  • XueBo Yin
    • 1
  • XiaoYuan Wang
    • 1
  • XiaoMei Wang
    • 1
    • 2
  • ZhiGang Zeng
    • 1
    Email author
  1. 1.Key Laboratory of Marine Geology and Environment, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina
  3. 3.Chinese Academy of Geological SciencesBeijingChina
  4. 4.East China Mineral Exploration and Development BureauNanjingChina

Personalised recommendations