Chinese Science Bulletin

, Volume 55, Issue 17, pp 1790–1794

Osteological evidence for predatory behavior of the giant percrocutid (Dinocrocuta gigantea) as an active hunter

Articles Geology


We present osteological evidence that a rhinocerotid skull belonging to a female Chilotherium wimani was bitten by a giant percrocutid, Dinocrocuta gigantea. Aided by comparative evidence of black rhino (Diceros bicornis) predation by extant spotted hyenas Crocuta crocuta, we interpret the healed wound on the C. wimani female as an injury incurred by the late Miocene D. gigantea. The hunting paleoecology of the giant percrocutid D. gigantea has long been speculated, but thus far no clear evidence has been discovered to point to the predatory habits of this carnivore. The present specimen of C. wimani provides evidence to indicate that the giant percrocutid shared similarities in predatory behavior to the modern spotted hyena: it was an active hunter in spite of the specialized bone-cracking craniodental morphology which imparted superb capability for processing bone.


predation rhinocerotid chilothere Dinocrocuta Miocene China 



vertebrate paleontology collection, Hezheng Paleozoological Museum, Gansu, China


the locality prefix of Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antunes M T, Balbino A C, Ginsburg L. Ichnological evidence of a Miocene rhinoceros bitten by a bear-dog (Amphicyon giganteus). Ann Paleont, 2006, 92: 31–39CrossRefGoogle Scholar
  2. 2.
    Deng T. Character, age and ecology of the Hezheng Biota from northwestern China. Acta Geol Sin, 2005, 79: 739–750Google Scholar
  3. 3.
    Moodie R L. Paleopathology: An Introduction of the Study of Ancient Evidence of Disease. Urbana: University Illinois Press, 1923. 1–567Google Scholar
  4. 4.
    Courville C B. Cranial injuries in prehistoric animals. Bull Los Angeles Neurol Soc, 1953, 18: 117–126Google Scholar
  5. 5.
    Johnston C S. A skull of Osteoborus validus from the early middle Pliocene of Texas. Jour Paleont, 1939, 13: 526–530Google Scholar
  6. 6.
    Nelson M E, Madsen Jr H H. Late Pleistocene musk oxen from Utah. Kansas Acad Sci Trans, 1978, 81: 277–295CrossRefGoogle Scholar
  7. 7.
    MacDonald J R. Pathological vertebrates from South Dakota. Bull Geol Soc Amer, 1951, 62: 1539Google Scholar
  8. 8.
    Bjork P R. The functional significance of a broken incisor in Amphicaenopus, an Oligocene rhinocerotid. Proc South Dakota Acad Sci, 1978, 57: 163–167Google Scholar
  9. 9.
    Lucas S G, Schoch R M. Paleopathology of early Cenozoic Coryphodon (Mammalia: Pantodonta). Vert Paleont, 1987, 7: 145–154Google Scholar
  10. 10.
    Green M. Pathologic vertebrate fossils and recent specimens. Proc South Dakota Acad Sci, 1961, 40: 142–148Google Scholar
  11. 11.
    Schultz A H. Notes on diseases and healed fractures of wild apes. In: Brothwell D, Sandison A T, eds. Diseases in Antiquity: A Survey of the Diseases, Injuries, and Surgery of Early Populations. Springfield: Thomas, 1967. 47–55Google Scholar
  12. 12.
    Kruuk H. The Spotted Hyena: A Study of Predation and Social Behavior. Chicago: University Chicago Press, 1972. 1–335Google Scholar
  13. 13.
    Tseng Z J. Cranial function in a late Miocene Dinocrocuta gigantea (Mammalia: Carnivora) revealed by comparative finite element analysis. Biol Linnean Soc, 2009, 96: 51–67CrossRefGoogle Scholar
  14. 14.
    Ringström T. Nashörner der Hipparion Fauna Nord-Chinas. Palaeont Sin Ser C, 1924, 1: 1–156Google Scholar
  15. 15.
    Agusti J, Antón M. Mammoths, Sabertooths, and Hominids. New York: Columbia University Press, 2002. 1–313Google Scholar
  16. 16.
    Rothschild B M, Martin L D. Paleopathology: Disease in the Fossil Record. Boca Raton: CRC Press, 1993. 1–352Google Scholar
  17. 17.
    Rhinelander F W. Tibial blood supply in relation to fracture healing. Clin Orthopedics, 1974, 105: 34–81Google Scholar
  18. 18.
    Miller G J. Some new evidence in support of the stabbing hypothesis for Smilodon californicus Bovard. Carnivore, 1980, 3: 8–26Google Scholar
  19. 19.
    Schlosser M. Die fossilen Säugethiere Chinas nebst einer Odontographie der recenten Antilopen. Abh Kön Bayer Akad Wiss, 1903, 22: 1–221Google Scholar
  20. 20.
    Qiu Z X, Xie J Y, Yan D F. Discovery of the skull of Dinocrocuta gigantean (in Chinese). Vert PalAsiat, 1988, 26: 128–138Google Scholar
  21. 21.
    Deng T, Wang X M, Ni X J, et al. Cenozoic stratigraphic sequence of the Linxia Basin in Gansu, China and its evidence from mammal fossils (in Chinese). Vert PalAsiat, 2004, 42: 45–66Google Scholar
  22. 22.
    Turner A, Antón M, Werdelin L. Taxonomy and evolutionary patterns in the fossil Hyaenidae of Europe. Geobios, 2008, 41: 677–687CrossRefGoogle Scholar
  23. 23.
    Guérin C. Palaeoecological study of Arrisdrift mammals. Mem Geol Surv Namibia, 2003, 19: 385–388Google Scholar
  24. 24.
    Carbone C, Mace G M, Roberts S C, et al. Energetic constraints on the diet of terrestrial carnivores. Nature, 1999, 402: 286–288CrossRefGoogle Scholar
  25. 25.
    Sorkin B. A biomechanical constraint on body mass in terrestrial mammalian predators. Lethaia, 2008, 41: 333–347CrossRefGoogle Scholar
  26. 26.
    Carbone C, Du Toit J T, Gordon I J. Feeding success in African wild dogs: Does kleptoparasitism by spotted hyenas influence hunting group size? Animal Ecol, 1997, 66: 318–326CrossRefGoogle Scholar
  27. 27.
    Hayward M W. Prey preferences of the spotted hyaena (Crocuta crocuta) and degree of dietary overlap with the lion (Panthera leo). Jour Zool, 2006, 270: 606–614CrossRefGoogle Scholar
  28. 28.
    Salnicki J, Teichmann M, Wilson V J, et al. Spotted hyaenas Crocuta crocuta prey on new-born elephant calves in Hwange National Park, Zumbabwe. Koedoe, 2001, 44: 79–83Google Scholar
  29. 29.
    Cullen A. A Window onto Wilderness. Nairobi: East African Publshing House, 1969, 1–185Google Scholar
  30. 30.
    Deane N N. The spotted hyaena Crocuta crocuta crocuta. Lammergeyer, 1962, 2: 26–44Google Scholar
  31. 31.
    Liang Z, Deng T. Age structure and habitat of the rhinoceros Chilotherium during the late Miocene in the Linxia Basin, Gansu, China (in Chinese). Vert PalAsiat, 2005, 43: 219–230Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
  2. 2.Department of Vertebrate PaleontologyNatural History Museum of Los Angeles CountyLos AngelesUSA
  3. 3.Integrative and Evolutionary Biology Program, Department of Biological SciencesUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations