Advertisement

Chinese Science Bulletin

, Volume 55, Issue 3, pp 228–232 | Cite as

Improved and excellent CO sensing properties of Cu-doped TiO2 nanofibers

  • Biao Wang
  • YuDong Zhao
  • LiMing Hu
  • JunSheng Cao
  • FengLi Gao
  • Yun Liu
  • LiJun Wang
Articles Electronics Physics

Abstract

Cu-doped TiO2 nanofibers with an average diameter of about 80 nm are synthesized through an electrospinning method. Both anatase and rutile crystallographic structures are found in the fibers based on XRD results. Compared with pure TiO2 nanofibers, the Cu-doped TiO2 nanofibers exhibit improved CO sensing properties at 300°C. The sensitivity of Cu-doped TiO2 nanofibers is up to 3 when the sensor is exposed to 5 ppm CO, and the response and recovery times are about 4 and 8 s, respectively. Good selectivity is also observed in our investigations. These results indicate that the Cu-doped TiO2 nanofibers can be used to fabricate high performance CO sensors in practice.

Keywords

CO nanomaterials metal oxide semiconductors gas sensors chemical sensors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Franke M E, Koplin T J, Simon U. Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter? Small, 2006, 2: 36–50CrossRefGoogle Scholar
  2. 2.
    Narsan N, Koziej D, Weimar U. Metal oxide-based gas sensor research: How to? Sens Actuators B, 2007, 121: 18–35CrossRefGoogle Scholar
  3. 3.
    Zou D W, Wang X J, Li X M. Sensibility characteristics of sintering Ag-SnO2 sensors (in Chinese). J Jiangxi Normal Univ (Nat Sci Ed), 1996, 20: 95–98Google Scholar
  4. 4.
    Zhang Z C, Wang T F, Deng Y H. Effect of Pt/Pd on WO3 combustible gas sensing element (in Chinese). Transducer Microsys Tech, 2008, 27: 40–42Google Scholar
  5. 5.
    Ling Z Y, Chen S S, Wang J C, et al. Fabrication and properties of anodic alumina humidity sensor with through-hole structure. Chinese Sci Bull, 2008, 53: 183–187CrossRefGoogle Scholar
  6. 6.
    Fu Y, Cao W H. Preparation of transparent TiO2 nanocrystalline film for UV sensor. Chinese Sci Bull, 2006, 51: 1657–1661CrossRefGoogle Scholar
  7. 7.
    Ge J P, Wang J, Zhang H X, et al. High ethanol sensitive SnO2 microspheres. Sens Actuators B, 2006, 113: 937–943CrossRefGoogle Scholar
  8. 8.
    Janata J, Josowicz M, Devaney D M. Chemical sensors. Anal Chem, 1994, 66: 207–228CrossRefGoogle Scholar
  9. 9.
    Yamazoe N, Fuchigami J, Kishikawa M, et al. Interactions of tin oxide surface with O2, H2O and H2. Surf Sci, 1979, 86: 335–344CrossRefGoogle Scholar
  10. 10.
    Chen Y, Zhu C, Wang T. The enhanced ethanol sensing properties of multi-walled carbon nanotubes/SnO2 core/shell nanostructures. Nanotechnology, 2006, 17: 3012–3017CrossRefGoogle Scholar
  11. 11.
    Kolmakov A, Moskovits M. Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu Rev Mater Res, 2004, 34: 151–180CrossRefGoogle Scholar
  12. 12.
    Huang X J, Choi Y K. Chemical sensors based on nanostructured materials. Sens Actuators B, 2007, 122: 659–671CrossRefGoogle Scholar
  13. 13.
    Chen Y J, Nie L, Xue X Y, et al. Linear ethanol sensing of SnO2 nanorods with extremely high sensitivity. Appl Phys Lett, 2006, 88: 083105CrossRefGoogle Scholar
  14. 14.
    Park K H, Dhayal M. High efficiency solar cell based on dye sensitized plasma treated nano-structured TiO2 films. Ectrochem Commun, 2009, 11: 75–79CrossRefGoogle Scholar
  15. 15.
    Zhao H M, Chen Y, Quan X, et al. Preparation of Zn-doped TiO2 nanotubes electrode and its application in pentachlorophenol photoelectro-catalytic degradation. Chinese Sci Bull, 2007, 52: 1456–1457CrossRefGoogle Scholar
  16. 16.
    Li B, Wang L D, Zhang D Q, et al. Preparation and characterization of compact TiO2 film used in Gratzelsolar cells. Chinese Sci Bull, 2004, 49: 123–127CrossRefGoogle Scholar
  17. 17.
    Ji H M, Lu H X, Ma D F, et al. Preparation and hydrogen gas sensitive characteristics of highly ordered titania nanotube arrays. Chinese Sci Bull, 2008, 53: 1352–1357CrossRefGoogle Scholar
  18. 18.
    Zhu Y C, Qian Y T. Solution-phase synthesis of nanomaterials at low temperature. Sci China Ser G-Phys Mech Astron, 2009, 52: 13–20CrossRefGoogle Scholar
  19. 19.
    Carney C M, Yoo S, Akbar S A. TiO2-SnO2 nanostructures and their H2 sensing behavior. Sens Actuators B, 2005, 108: 29–33CrossRefGoogle Scholar
  20. 20.
    Ruiz A M, Cornet A, Morante J R. Performances of La-TiO2 nanoparticles as gas sensing material. Sens Actuators B, 2005, 111–112: 7–22CrossRefGoogle Scholar
  21. 21.
    AQS (2000), Department of the Environment, Transport and the Regions, The Scottish Executive, The National Assembly for Wales and The Department of the Environment Northern Ireland. The Air Quality Strategy for England Scotland, Wales and Northern Ireland, January 2000Google Scholar
  22. 22.
    Patil L A, Patil D R. Heterocontact type CuO-modified SnO2 sensorfor the detection of a ppm level H2S gas at room temperature. Sens Actuators B, 2006, 120: 316–323CrossRefGoogle Scholar
  23. 23.
    Greiner A, Wendorff J H. Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed, 2007, 46: 5670–5703CrossRefGoogle Scholar
  24. 24.
    Zhang Y, He X, Li J, et al. Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers. Sens Actuators B, 2008, 132: 67–73CrossRefGoogle Scholar
  25. 25.
    Agarwal S, Sharma G L. Humidity sensing properties of (Ba, Sr)TiO3 thin films grown by hydrothermal-electrochemical method. Sens Actuators B, 2002, 85: 205–211CrossRefGoogle Scholar
  26. 26.
    Gomeza H, Maldonadoa A, Olvera M L, et al. Gallium-doped ZnO thin films deposited by chemical spray. Sol Energ Mat Sol C, 2005, 87: 107–116CrossRefGoogle Scholar
  27. 27.
    Jho J H, Kim D H, Kim S J, et al. Synthesis and photocatalytic property of a mixture of anatase and rutile TiO2 doped with Fe by mechanical alloying process. J Alloy Compd, 2008, 459: 386–389CrossRefGoogle Scholar
  28. 28.
    Wan Q, Li Q H, Chen Y J, et al. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl Phys Lett, 2004, 84: 3654–3656CrossRefGoogle Scholar
  29. 29.
    Neri G, Bonavita A, Micali G, et al. Ethanol sensors based on Pt-doped tin oxide nanopowders synthesized by gel-combustion. Sens Actuators B, 2006, 117: 196–204CrossRefGoogle Scholar
  30. 30.
    Kong J, Franklin N R, Zhou C, et al. Nanotube molecular wires as chemical sensors. Science, 2000, 28: 622–625CrossRefGoogle Scholar
  31. 31.
    Chen Y J, Xue X Y, Wang Y G, et al. Synthesis and ethanol sensing characteristics of single crystalline SnO2 nanorods. Appl Phys Lett, 2005, 87: 233503CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer Berlin Heidelberg 2010

Authors and Affiliations

  • Biao Wang
    • 1
  • YuDong Zhao
    • 2
  • LiMing Hu
    • 1
  • JunSheng Cao
    • 1
  • FengLi Gao
    • 2
  • Yun Liu
    • 1
  • LiJun Wang
    • 1
  1. 1.Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and PhysicsChinese Academy of SciencesChangchunChina
  2. 2.State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and EngineeringJilin UniversityChangchunChina

Personalised recommendations