Advertisement

Chinese Science Bulletin

, Volume 54, Issue 23, pp 4371–4375 | Cite as

Micro-structure sensors based on ZnO microcrystals with contact-controlled ethanol sensing

  • Li LiuEmail author
  • Tong Zhang
  • ShouChun Li
  • LianYuan Wang
  • YunXia Tian
Articles / Electronics Physics

Abstract

ZnO microcrystals are synthesized through a facile solution method and characterized by field-emission scanning electron microscopy, transmission electron microscopy, selected area electron diffraction and X-ray diffraction. The ethanol sensing properties of these microcrystals are investigated by spin-coating them on a silicon substrate with Pt electrodes to fabricate a micro-structure sensor. The sensitivity is up to 8 when the sensor is exposed to 50 ppm ethanol, and the response time and recovery time are 10 s and 20 s, respectively. A contact-controlled model is established to explain the sensing properties of the microcrystals, which provides another approach to realize high-performance gas sensors.

Keywords

ZnO ethanol micro-structure sensors semiconducting metal oxides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Janata J, Josowicz M, Devaney D M. Chemical sensors. Anal Chem, 1994, 66: 207–228CrossRefGoogle Scholar
  2. 2.
    Guo B, Bermak A, Chan P C H, et al. A monolithic integrated 4×4 tin oxide gas sensor array with on-chip multiplexing and differential readout circuits. Solid-State Electron, 2007, 51: 69–76CrossRefGoogle Scholar
  3. 3.
    Leman O, Chaehoi A, Mailly F, et al. Modeling and system-level simulation of a CMOS convective accelerometer. Solid-State Electron, 2007, 51: 1609–1617CrossRefGoogle Scholar
  4. 4.
    Olbrechts B, Rue B, Suski J, et al. Characterization of FD SOI devices and VCO’s on thin dielectric membranes under pressure. Solid-State Electron, 2007, 51: 1229–1237CrossRefGoogle Scholar
  5. 5.
    Su P G, Wu R J, Nieh F P. Detection of nitrogen dioxide using mixed tungsten oxide-based thick film semiconductor sensor. Talanta, 2003, 59: 667–672CrossRefGoogle Scholar
  6. 6.
    Franke M E, Koplin T J, Simon U. Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter? Small, 2006, 2: 36–50CrossRefGoogle Scholar
  7. 7.
    Navamathavan R, Choi C K, Yang E J, et al. Fabrication and characterizations of ZnO thin film transistors prepared by using radio frequency magnetron sputtering. Solid-State Electron, 2008, 52: 813–816CrossRefGoogle Scholar
  8. 8.
    Iñiguez B, Picos R, Veksler D, et al. Universal compact model for long- and short-channel thin-film transistors. Solid-State Electron, 2008, 52: 400–405CrossRefGoogle Scholar
  9. 9.
    Mandalapu L J, Xiu F X, Yang Z, et al. Ultraviolet photoconductive detectors based on Ga-doped ZnO films grown by molecular-beam epitaxy. Solid-State Electron, 2007, 51: 1014–1017CrossRefGoogle Scholar
  10. 10.
    Wang D, Chu X, Gong M. Hydrothermal growth of ZnO nanoscrew-drivers and their gas sensing properties. Nanotechnology, 2007, 18: 185601CrossRefGoogle Scholar
  11. 11.
    Chen Z J, Han T, Ji X J, et al. Lamb wave sensors array for nonviscous liquid sensing. Sci China Ser G-Phys Mech Astron, 2006, 49: 461–472CrossRefGoogle Scholar
  12. 12.
    Xu D, Gu J H, Wu S. Development and application of flexible substrate sensors in instantaneous heat flux measurement. Chinese Sci Bull, 2009, 54: 1311–1316CrossRefGoogle Scholar
  13. 13.
    Gao G J, Fan L, Lu H M, et al. Engineering Deinococcus radiodurans into biosensor to monitor radioactivity and genotoxicity in environment. Chinese Sci Bull, 2008, 53: 1675–1681CrossRefGoogle Scholar
  14. 14.
    Li H H, Lü F T, Zhang S J, et al. Preparation of monolayer-assembled fluorescent film and its sensing performances to hidden nitroaromatic explosives. Chinese Sci Bull, 2008, 53: 1644–1650CrossRefGoogle Scholar
  15. 15.
    Ling Z Y, Chen S S, Wang J C, et al. Fabrication and properties of anodic alumina humidity sensor with through-hole structure. Chinese Sci Bull, 2008, 53: 183–187CrossRefGoogle Scholar
  16. 16.
    Wu C S, Wang L J, Zhou J, et al. The progress of olfactory transduction and biomimetic olfactory-based biosensors. Chinese Sci Bull, 2007, 52: 1886–1896CrossRefGoogle Scholar
  17. 17.
    Luo J, Huang Y Y, Xiong S X, et al. Study on peptide-peptide interaction using high-performance affinity chromatography and quartz crystal microbalance biosensor. Chinese Sci Bull, 2007, 52: 1311–1319CrossRefGoogle Scholar
  18. 18.
    Wu S, Chen H, Gu J H, et al. A thermal insulation method for a piezoelectric transducer. Chinese Sci Bull, 2007, 52: 2305–2309CrossRefGoogle Scholar
  19. 19.
    Yu J H, Choi G M. Electrical and CO gas-sensing properties of ZnO/SnO2 hetero-contact. Sens Actuat B Chem, 1999, 61: 59–67CrossRefGoogle Scholar
  20. 20.
    Li C C, Du Z F, Li L M, et al. Surface-depletion controlled gas sensing of ZnO nanorods grown at room temperature. Appl Phys Lett, 2007, 91: 032101CrossRefGoogle Scholar
  21. 21.
    Feng P, Xue X Y, Liu Y G, et al. Highly sensitive ethanol sensors based on {100}-bounded In2O3 nanocrystals due to face contact. Appl Phys Lett, 2006, 89: 243514CrossRefGoogle Scholar
  22. 22.
    Wan Q, Li Q H, Chen Y J, et al. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl Phys Lett, 2004, 84: 3654–3656CrossRefGoogle Scholar
  23. 23.
    Chen Y J, Xue X Y, Wang Y G, et al. Synthesis and ethanol sensing characteristics of single crystalline SnO2 nanorods. Appl Phys Lett, 2005, 87: 233503CrossRefGoogle Scholar
  24. 24.
    Chen Y J, Nie L, Xue X Y, et al. Linear ethanol sensing of SnO2 nanorods with extremely high sensitivity. Appl Phys Lett, 2006, 88: 083105CrossRefGoogle Scholar
  25. 25.
    Chen Y, Zhu C L, Xiao G. Reduced-temperature ethanol sensing characteristics of flower-like ZnO nanorods synthesized by a sonochemical method. Nanotechnology, 2006, 17: 4537–4541CrossRefGoogle Scholar
  26. 26.
    Barsan N, Koziej D, Weimar U. Metal oxide-based gas sensor research: How to? Sens Actuat B Chem, 2007, 121: 18–35CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Li Liu
    • 1
    • 2
    Email author
  • Tong Zhang
    • 3
  • ShouChun Li
    • 1
    • 2
  • LianYuan Wang
    • 1
    • 2
  • YunXia Tian
    • 1
    • 2
  1. 1.College of PhysicsJilin UniversityChangchunChina
  2. 2.National Laboratory of Superhard MaterialsJilin UniversityChangchunChina
  3. 3.State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and EngineeringJilin UniversityChangchunChina

Personalised recommendations