Advertisement

Chinese Science Bulletin

, Volume 54, Issue 16, pp 2781–2785 | Cite as

Statistical properties of Chinese semantic networks

  • HaiTao Liu
Articles/Theoretical Physics

Abstract

Almost all language networks in word and syntactic levels are small-world and scale-free. This raises the questions of whether a language network in deeper semantic or cognitive level also has the similar properties. To answer the question, we built up a Chinese semantic network based on a treebank with semantic role (argument structure) annotation and investigated its global statistical properties. The results show that although semantic network is also small-world and scale-free, it is different from syntactic network in hierarchical structure and K-Nearest-Neighbor correlation.

Keywords

semantic network semantic role complex network Chinese small-world scale-free 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Solé R, Corominas B, Valverde S, et al. Language networks: Their structure, function and evolution. Santa Fe Institute Working Paper, 2005, 05-12–042Google Scholar
  2. 2.
    Ferrer i Cancho R, Sole R V, Kohler R. Patterns in syntactic dependency networks. Phys Rev E, 2004, 69: 051915CrossRefGoogle Scholar
  3. 3.
    Li Y, Wei L X, Li W, et al. Small-world patterns in Chinese phrase networks. Chinese Sci Bull, 2005, 50: 286–288CrossRefGoogle Scholar
  4. 4.
    Liu H. The complexity of Chinese dependency syntactic networks. Physica A, 2008, 387: 3048–3058Google Scholar
  5. 5.
    Liu H, Hu F. What role does syntax play in a language network? Europhys Lett, 2008, 83: 18002CrossRefGoogle Scholar
  6. 6.
    Hudson R A. Language Networks: The New Word Grammar. Oxford: Oxford University Press, 2007Google Scholar
  7. 7.
    Tesniere L. Elements de la Syntaxe Structurale. Paris: Klincksieck, 1959Google Scholar
  8. 8.
    Hajičová E. Dependency-based underlying-structure tagging of a very large Czech corpus. In: special issue of TAL journal, Grammaires de Dependence/Dependency Grammars. Paris: Hermes, 2000. 57–78Google Scholar
  9. 9.
    Milićević J. A short guide to the meaning-text linguistic theory. J Koralex, 2006, 8: 187–233Google Scholar
  10. 10.
    Hausser R. A Computational Model of Natural Language Communication. Berlin, Heidelberg: Springer, 2006Google Scholar
  11. 11.
    Sowa J F. Conceptual graphs for a data base interface. IBM J Res Develop, 1976, 20: 336–357CrossRefGoogle Scholar
  12. 12.
    Guan R. Annotation of Chinese semantic treebank and semantic parsing (in Chinese). Master Thesis. Beijing: Communication University of China, 2008Google Scholar
  13. 13.
    Albert R, Barabasi A L. Statistical mechanics of complex networks. Rev Mod Phys, 2002, 74: 47–97CrossRefGoogle Scholar
  14. 14.
    Watts D J, Strogatz S H. Collective dynamics of “small-world” networks. Nature, 1998, 393: 440–442CrossRefGoogle Scholar
  15. 15.
    Barabasi A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286: 509–512CrossRefGoogle Scholar
  16. 16.
    Ravasz E, Somera A L, Mongru D A, et al. Hierarchical organization of modularity in metabolic networks. Science, 2002, 297: 1551–1555CrossRefGoogle Scholar
  17. 17.
    Pastor-Satorras R, Vespignani A. Evolution and Structure of the Internet: A Statistical Physics Approach. Cambridge, UK: Cambridge University Press, 2004Google Scholar
  18. 18.
    Newman M E J. Assortative mixing in networks. Phys Rev Lett, 2002, 89: 208701CrossRefGoogle Scholar
  19. 19.
    Pastor-Satorras R, Vazquez A, Vespignani A. Dynamical and correlation properties of the internet. Phys Rev Lett, 2001, 87: 258701CrossRefGoogle Scholar
  20. 20.
    Caldarelli G. Scale-free Networks: Complex Webs in Nature and Technology. Oxford: Oxford University Press, 2007Google Scholar
  21. 21.
    Steyvers M, Tenenbaum J B. The large-scale structure of semantic networks: statistical analyses and a model of semantic growth. Cognit Sci, 2005, 29: 41–78Google Scholar
  22. 22.
    Gil R, Garcia R. Measuring the semantic web. In: Advances in Metadata Research, Proceedings of MTSR’05. Paramus: Rinton Press, 2006Google Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.Institute of Applied LinguisticsCommunication University of ChinaBeijingChina

Personalised recommendations