Advertisement

Chinese Science Bulletin

, Volume 54, Issue 23, pp 4529–4533 | Cite as

Vast laminated diatom mat deposits from the west low-latitude Pacific Ocean in the last glacial period

  • Bin Zhai
  • TieGang LiEmail author
  • FengMing Chang
  • QiYuan Cao
Articles / Oceanology

Abstract

Diatoms are one of the predominant contributors to global carbon fixation by accounting for over 40% of total oceanic primary production and dominate export production. They play a significant role in marine biogeochemistry cycle. The diatom mat deposits are results of vast diatoms bloom. By analysis of diatom mats in 136°00′−140°00′E, 15°00′−21°00′N, Eastern Philippines Sea, we identified the species of the diatoms as giant Ethmodiscus rex (Wallich) Hendey. AMS 14C dating shows that the sediments rich in diatom mats occurred during 16000−28600 a B.P., which means the bloom mainly occurred during the last glacial period, while there are no diatom mat deposits in other layers. Preliminary analysis indicates that Antarctic Intermediate Water (AAIW) expanded northward and brought silicate-rich water into the area, namely, silicon leakage processes caused the bloom of diatoms. In addition, the increase of iron input is one of the main reasons for the diatom bloom.

Keywords

diatom mats West Pacific Ocean AMS 14C dating last glacial period AAIW 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nelson D M, Brzezinski M A, Sigmon D E, et al. A seasonal progression of Si limitation in the Pacific sector of the Southern Ocean. Deep-Sea Res Part II, 2001, 48: 3973–3995CrossRefGoogle Scholar
  2. 2.
    Sarthou G, Timmermans K R, Blain S, et al. Growth physiology and fate of diatoms in the ocean: a review. J Sea Res, 2005, 53: 25–42CrossRefGoogle Scholar
  3. 3.
    Bopp L, Aumont O, Cadule P, et al. Response of diatoms distribution to global warming and potential implications: A global model study. Geophys Res Lett, 2005, 32: L19606, doi:10.1029/2005GL023653CrossRefGoogle Scholar
  4. 4.
    Archer D, Winguth A, Chicago I, et al. What caused the glacial/interglacial atmospheric pCO2 cycles? Rev Geophys, 2000, 38: 159–189CrossRefGoogle Scholar
  5. 5.
    Goldman J C, Dennis J, McGillicuddy J. Effect of large marine diatoms growing at low light on episodic new production. Limnol Oceanogr, 2003, 48: 1176–1182CrossRefGoogle Scholar
  6. 6.
    Kemp A E S, Pike J, Pearce R B, et al. The “Fall dump” —a new perspective on the role of a “shade flora” in the annual cycle of diatom production and export flux. Deep-Sea Res Part II, 2000, 47: 2129–2154CrossRefGoogle Scholar
  7. 7.
    Kemp A E S, Baldauf J G. Vast neogene laminated diatom mat deposits from the eastern equatorial Pacific Ocean. Nature, 1993, 362: 141–144CrossRefGoogle Scholar
  8. 8.
    Kemp A E S, Baldauf J G, Pearce R B. Origins and paleo-ceanographic significance of laminated diatom ooze from the eastern equatorial Pacific Ocean. Proc Ocean Drill Prog Sci Res, 1995, 138: 641–645Google Scholar
  9. 9.
    Grigorov I, Pearce R B, Kemp A E S. Southern Ocean laminated diatom ooze: mat deposits and potential for palaeo-flux studies, ODP leg 177, Site 1093. Deep-Sea Res Part II, 2002, 49: 3391–3407CrossRefGoogle Scholar
  10. 10.
    Dickens G R, Barron J A. A rapidly deposited pennate diatom ooze in Upper Miocene-Lower Pliocene sediment beneath the North Pacific polar front. Mar Micropaleontol, 1997, 31: 177–182CrossRefGoogle Scholar
  11. 11.
    Boden P, Backman J. A laminated sediment sequence from the northern North Atlantic Ocean and its climatic record. Geology, 1996, 24: 507–510CrossRefGoogle Scholar
  12. 12.
    Abrantes F. Assessing the Ethmodiscus ooze problem: new perspective from a study of an eastern equatorial Atlantic core. Deep-Sea Res Part I, 2001, 48: 125–135CrossRefGoogle Scholar
  13. 13.
    Broecker W S, Clark E, Lynch-Stieglitz J, et al. Late glacial diatom accumulation at 9°S in the Indian Ocean. Paleoceanography, 2000, 15: 348–352CrossRefGoogle Scholar
  14. 14.
    De Deckker P, Gingele F X. On the occurrence of the giant diatom Ethmodiscus rex in an 80-ka record from a deep-sea core, southeast of Sumatra, Indonesia: implications for tropical palaeoceanography. Mar Geol, 2002, 183: 31–43CrossRefGoogle Scholar
  15. 15.
    Villareal T A. Abundance of the giant diatom Ethmodiscus in the southwest Atlantic Ocean and central Pacific gyre. Diatom Res, 1993, 8: 171–177Google Scholar
  16. 16.
    Villareal T A, Joseph L, Brzezinski M A, et al. Biological and chemical characteristics of the giant diatom Ethmodiscus (Bacillariophyceae) in the central North Pacific gyre. J Phycol, 1999, 35: 896–902CrossRefGoogle Scholar
  17. 17.
    Villareal T A, McKay R M L, Al-Rshaidat M M D, et al. Compositional and fluorescence characteristics of the giant diatom Ethmodiscus along a 3000 km transect (28°N) in the central North Pacific gyre. Deep-Sea Res Part I, 2007, 54: 1273–1288CrossRefGoogle Scholar
  18. 18.
    Kemp A E S, Pearce R B, Grigorov I, et al. Production of giant marine diatoms and their export at oceanic frontal zones: Implications for Si and C flux from stratified oceans. Global Biogeochem Cycles, 2006, 20: GB4S04, doi:10.1029/2006GB002698CrossRefGoogle Scholar
  19. 19.
    Xu Z K, Li A C, Jiang F Q, et al. Geochemical character and material source of sediments in the eastern Philippine Sea. Chinese Sci Bull, 2008, 53: 923–931CrossRefGoogle Scholar
  20. 20.
    Brzezinski M, Pride C J, Franck V M, et al. A switch from Si(OH)4 to NO3. depletion in the glacial Southern Ocean. Geophys Res Lett, 2002, 29, doi:10.1029/2001GL014349Google Scholar
  21. 21.
    Sarmiento J L, Gruber N, Brzezinski M A, et al. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature, 2004, 427: 56–60CrossRefGoogle Scholar
  22. 22.
    Talley L D. Some aspects of ocean heat transport by the shallow, intermediate and deep overturning circulations. Geophys Monogr, 1999, 112: 1–22Google Scholar
  23. 23.
    Tsuchiya M. Flow path of the Antarctic intermediate water in the western equatorial South Pacific Ocean. Deep-Sea Res Part A, 1991, 38: 273–279Google Scholar
  24. 24.
    Qu T, Mitsudera H, Yamagata T. A climatology of the circulation and water mass distribution near the Philippine coast. J Phys Oceanogr, 1999, 29: 1488–1505CrossRefGoogle Scholar
  25. 25.
    Lindstrom E, Lukas R, Fine R, et al. The western equatorial Pacific Ocean circulation study. Nature, 1987, 330: 533–537CrossRefGoogle Scholar
  26. 26.
    Koutavas A, Lynch-Stieglitz J, Marchitto T M, et al. El Nino-like pattern in ice age tropical Pacific sea surface temperature. Science, 2002, 297: 226–230CrossRefGoogle Scholar
  27. 27.
    Hutchins D A, Bruland K W. Iron-limited diatom growth and Si: N uptake ratios ina coastal upwelling regime. Nature, 1998, 393: 561–564CrossRefGoogle Scholar
  28. 28.
    Takeda S. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature, 1998, 393: 774–777.CrossRefGoogle Scholar
  29. 29.
    Sun X, Luo Y, Huang F, et al. Deep-sea pollen from the South China Sea: Pleistocene indicators of East Asian monsoon. Mar Geol, 2003, 201: 97–118CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Bin Zhai
    • 1
    • 2
  • TieGang Li
    • 1
    Email author
  • FengMing Chang
    • 1
  • QiYuan Cao
    • 1
  1. 1.Key Laboratory of Marine Geology and Environment, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations