Chinese Science Bulletin

, Volume 54, Issue 14, pp 2383–2389 | Cite as

Imprinting in plants

  • Jose Gutierrez-MarcosEmail author
Special Topic/Review/Developmental Genetics


Genomic imprinting leads to the differential expression of parental alleles after fertilization. Imprinting appears to have evolved independently in mammals and flowering plants to regulate the development of nutrient-transfer placental tissues. In addition, the regulation of imprinting in both mammals and flowering plants involves changes in DNA methylation and histone methylation, thus suggesting that the epigenetic signals that regulate imprinting have been co-opted in these distantly related species.


Imprinting epigenetics transposon endosperm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berger F, Hamamura Y, Ingouff M, et al. Double fertilization - caught in the act. Trends Plant Sci, 2008, 13: 437–443CrossRefGoogle Scholar
  2. 2.
    Gehring M, Choi Y, Fischer R L. Imprinting and seed development. Plant Cell, 2004, 16(Suppl): S203–S213CrossRefGoogle Scholar
  3. 3.
    Haig D, Westoby M. Genomic imprinting in endosperm: its effect on seed development in crosses between species, and between different ploidies of the same species, and its implications for the evolution of apomixis. Philos Trans R Soc Lond B Biol Sci, 1991, 333: 1–13CrossRefGoogle Scholar
  4. 4.
    Haig D, Westoby W. Parent-specific gene expression and the triploid endosperm. AmNaturalist, 1989, 134: 147–155CrossRefGoogle Scholar
  5. 5.
    Feil R, Berger F. Convergent evolution of genomic imprinting in plants and mammals. Trends Genet, 2007, 23: 192–199CrossRefGoogle Scholar
  6. 6.
    Kinoshita T, Ikeda Y, Ishikawa R. Genomic imprinting: a balance between antagonistic roles of parental chromosomes. Semin Cell Dev Biol, 2008, 19: 574–579CrossRefGoogle Scholar
  7. 7.
    Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet, 2001, 2: 21–32CrossRefGoogle Scholar
  8. 8.
    Huh J H, Bauer M J, Hsieh T F, et al. Cellular programming of plant gene imprinting. Cell, 2008, 132: 735–744CrossRefGoogle Scholar
  9. 9.
    Choi Y, Gehring M, Johnson L, et al. DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell, 2002, 110: 33–42CrossRefGoogle Scholar
  10. 10.
    Jullien P E, Kinoshita T, Ohad N, et al. Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell, 2006, 18: 1360–1372CrossRefGoogle Scholar
  11. 11.
    Alleman M, Doctor J. Genomic imprinting in plants: observations and evolutionary implications. Plant Mol Biol, 2000, 43: 147–161CrossRefGoogle Scholar
  12. 12.
    Kermicle J L. Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission. Genetics, 1970, 66: 69–85Google Scholar
  13. 13.
    Kermicle J L, Alleman M. Gametic imprinting in maize in relation to the angiosperm life cycle. Dev Suppl, 1990, 108: 9–14Google Scholar
  14. 14.
    Brink R A, Cooper D C. Effect of the De(17) allele on development of the maize caryopsis. Genetics, 1947, 32: 350–368Google Scholar
  15. 15.
    Chaudhuri S, Messing J. Allele-specific parental imprinting of dzr1, a posttranscriptional regulator of zein accumulation. Proc Natl Acad Sci USA, 1994, 91: 4867–4871CrossRefGoogle Scholar
  16. 16.
    Lund G, Ciceri P, Viotti A. Maternal-specific demethylation and expression of specific alleles of zein genes in the endosperm of Zea mays L. Plant J, 1995, 8: 571–781CrossRefGoogle Scholar
  17. 17.
    Bianchi M W, Viotti A. DNA methylation and tissue-specific transcription of the storage proteins of maize. Plant Molecular Biology, 1988, 11: 203–214CrossRefGoogle Scholar
  18. 18.
    Chaudhury A M, Ming L, Miller C, et al. Fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA, 1997, 94: 4223–4228CrossRefGoogle Scholar
  19. 19.
    Grossniklaus U, Vielle-Calzada J P, Hoeppner M A, et al. Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science, 1998, 280: 446–450CrossRefGoogle Scholar
  20. 20.
    Luo M, Bilodeau P, Koltunow A, et al. Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA, 1999, 96: 296–301CrossRefGoogle Scholar
  21. 21.
    Kinoshita T, Yadegari R, Harada J J, et al. Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm. Plant Cell, 1999, 11: 1945–1952CrossRefGoogle Scholar
  22. 22.
    Chanvivattana Y, Bishopp A, Schubert D, et al. Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development, 2004, 131: 5263–5276CrossRefGoogle Scholar
  23. 23.
    Gendall A R, Levy Y Y, Wilson A, et al. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell, 2001, 107: 525–535CrossRefGoogle Scholar
  24. 24.
    Goodrich J, Puangsomlee P, Martin M, et al. A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature, 1997, 386: 44–51CrossRefGoogle Scholar
  25. 25.
    Kohler C, Hennig L, Bouveret R, et al. Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development. EMBO J, 2003, 22: 4804–4814CrossRefGoogle Scholar
  26. 26.
    Luo M, Bilodeau P, Dennis E S, et al. Expression and parent-oforigin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc Natl Acad Sci USA, 2000, 97: 10637–10642CrossRefGoogle Scholar
  27. 27.
    Yoshida N, Yanai Y, Chen L, et al. EMBRYONIC FLOWER2, a novel polycomb group protein homolog, mediates shoot development and flowering in Arabidopsis. Plant Cell, 2001, 13: 2471–2481CrossRefGoogle Scholar
  28. 28.
    Guitton A E, Page D R, Chambrier P, et al. Identification of new members of Fertilisation Independent Seed Polycomb Group pathway involved in the control of seed development in Arabidopsis thaliana. Development, 2004, 131: 2971–2981CrossRefGoogle Scholar
  29. 29.
    Springer N M, Danilevskaya O N, Hermon P, et al. Sequence relationships, conserved domains, and expression patterns for maize homologs of the polycomb group genes E(z), esc, and E(Pc). Plant Physiol, 2002, 128: 1332–1345CrossRefGoogle Scholar
  30. 30.
    Danilevskaya O N, Hermon P, Hantke S, et al. Duplicated fie genes in maize: expression pattern and imprinting suggest distinct functions. Plant Cell, 2003, 15: 425–438CrossRefGoogle Scholar
  31. 31.
    Gutierrez-Marcos J F, Pennington P D, Costa L M, et al. Imprinting in the endosperm: a possible role in preventing wide hybridization. Philos Trans R Soc Lond B Biol Sci, 2003, 358: 1105–1111CrossRefGoogle Scholar
  32. 32.
    Haun W J, Laoueille-Duprat S, O’connell M J, et al. Genomic imprinting, methylation and molecular evolution of maize Enhancer of zeste (Mez) homologs. Plant J, 2007, 49: 325–337CrossRefGoogle Scholar
  33. 33.
    Gutierrez-Marcos J F, Costa L M, Dal Pra M, et al. Epigenetic asymmetry of imprinted genes in plant gametes. Nat Genet, 2006, 38: 876–878CrossRefGoogle Scholar
  34. 34.
    Guo M, Rupe M A, Danilevskaya O N, et al. Genome-wide mRNA profiling reveals heterochronic allelic variation and a new imprinted gene in hybrid maize endosperm. Plant J, 2003, 36: 30–44CrossRefGoogle Scholar
  35. 35.
    Kinoshita T, Miura A, Choi Y, et al. One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science, 2004, 303: 521–523CrossRefGoogle Scholar
  36. 36.
    Tiwari S, Schulz R, Ikeda Y, et al. MATERNALLY EXPRESSED PAB C-TERMINAL, a novel imprinted gene in Arabidopsis, encodes the conserved C-terminal domain of polyadenylate binding proteins. Plant Cell, 2008, 20: 2387–2398CrossRefGoogle Scholar
  37. 37.
    Henikoff J G, Gehring M, Zilberman D. Genome-wide profiling of histone variants, active chromatin and DNA methylation. In: Bartolomei M, Feil R, Berger F, eds. EMBO Workshop on Genomic Imprinting. Temasek, Singapore: EMBO, 2009. 20Google Scholar
  38. 38.
    Stupar R M, Hermanson P J, Springer N M. Nonadditive expression and parent-of-origin effects identified by microarray and allele-specific expression profiling of maize endosperm. Plant Physiol, 2007, 145: 411–425CrossRefGoogle Scholar
  39. 39.
    Tiwari S, Spielman M, Day R C, et al. Proliferative phase endosperm promoters from Arabidopsis thaliana. Plant Biotechnol J, 2006, 4: 393–407CrossRefGoogle Scholar
  40. 40.
    Vielle-Calzada J P, Thomas J, Spillane C, et al. Maintenance of genomic imprinting at the Arabidopsis medea locus requires zygotic DDM1 activity. Genes Dev, 1999, 13: 2971–2982CrossRefGoogle Scholar
  41. 41.
    Finnegan E J, Dennis E S. Isolation and identification by sequence homology of a putative cytosine methyltransferase from Arabidopsis thaliana. Nucleic Acids Res, 1993, 21: 2383–2388CrossRefGoogle Scholar
  42. 42.
    Henikoff S, Comai L. A DNA methyltransferase homolog with a chromodomain exists in multiple polymorphic forms in Arabidopsis. Genetics, 1998, 149: 307–318Google Scholar
  43. 43.
    Lindroth A M, Cao X, Jackson J P, et al. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science, 2001, 292: 2077–2080CrossRefGoogle Scholar
  44. 44.
    Tompa R, Mccallum C M, Delrow J, et al. Genome-wide profiling of DNA methylation reveals transposon targets of CHROMOMETHYLASE3. Curr Biol, 2002, 12: 65–68CrossRefGoogle Scholar
  45. 45.
    Cao X, Aufsatz W, Zilberman D, et al. Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation. Curr Biol, 2003, 13: 2212–2217CrossRefGoogle Scholar
  46. 46.
    Cao X, Jacobsen S E. Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proc Natl Acad Sci USA, 2002, 99(Suppl 4): 16491–16498CrossRefGoogle Scholar
  47. 47.
    Cao X, Springer N M, Muszynski M G, et al. Conserved plant genes with similarity to mammalian de novo DNA methyltransferases. Proc Natl Acad Sci USA, 2000, 97: 4979–4984CrossRefGoogle Scholar
  48. 48.
    Brzeski J, Jerzmanowski A. Deficient in DNA methylation 1 (DDM1) defines a novel family of chromatin-remodeling factors. J Biol Chem, 2003, 278: 823–828CrossRefGoogle Scholar
  49. 49.
    Jeddeloh J A, Stokes T L, Richards E J. Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nat Genet, 1999, 22: 94–97CrossRefGoogle Scholar
  50. 50.
    Kakutani T, Jeddeloh J A, Flowers S K, et al. Developmental abnormalities and epimutations associated with DNA hypomethylation mutations. Proc Natl Acad Sci USA, 1996, 93: 12406–12411CrossRefGoogle Scholar
  51. 51.
    Morgante M, de Paoli E, Radovic S. Transposable elements and the plant pan-genomes. Curr Opin Plant Biol, 2007, 10: 149–155CrossRefGoogle Scholar
  52. 52.
    Ungerer M C, Strakosh S C, Zhen Y. Genome expansion in three hybrid sunflower species is associated with retrotransposon proliferation. Curr Biol, 2006, 16: R872–R873CrossRefGoogle Scholar
  53. 53.
    Josefsson C, Dilkes B, Comai L. Parent-dependent loss of gene silencing during interspecies hybridization. Curr Biol, 2006, 16: 1322–1328CrossRefGoogle Scholar
  54. 54.
    Kashkush K, Feldman M, Levy A A. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet, 2003, 33: 102–106CrossRefGoogle Scholar
  55. 55.
    Eisses J F, Lafoe D, Scott L A, et al. Novel, developmentally specific control of Ds transposition in maize. Mol Gen Genet, 1997, 256: 158–168CrossRefGoogle Scholar
  56. 56.
    Gehring M, Henikoff S. DNA methylation dynamics in plant genomes. Biochim Biophys Acta, 2007, 1769: 276–286Google Scholar
  57. 57.
    Henderson I R, Jacobsen S E. Epigenetic inheritance in plants. Nature, 2007, 447: 418–424CrossRefGoogle Scholar
  58. 58.
    David S S, O’shea V L, Kundu S. Base-excision repair of oxidative DNA damage. Nature, 2007, 447: 941–950CrossRefGoogle Scholar
  59. 59.
    Lauria M, Rupe M, Guo M, et al. Extensive maternal DNA hypomethylation in the endosperm of Zea mays. Plant Cell, 2004, 16: 510–522CrossRefGoogle Scholar
  60. 60.
    Hermon P, Srilunchang K O, Zou J, et al. Activation of the imprinted Polycomb Group Fie1 gene in maize endosperm requires demethylation of the maternal allele. Plant Mol Biol, 2007, 64: 387–395CrossRefGoogle Scholar
  61. 61.
    Lund G, Messing J, Viotti A. Endosperm-specific demethylation and activation of specific alleles of alpha-tubulin genes of Zea mays L. Mol Gen Genet, 1995, 246: 716–722CrossRefGoogle Scholar
  62. 62.
    Makarevich G, Villar C B, Erilova A, et al. Mechanism of PHERES1 imprinting in Arabidopsis. J Cell Sci, 2008, 121(Pt 6): 906–912CrossRefGoogle Scholar
  63. 63.
    Gehring M, Huh J H, Hsieh T F, et al. DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Cell, 2006, 124: 495–506CrossRefGoogle Scholar
  64. 64.
    Jullien P E, Katz A, Oliva M, et al. Polycomb group complexes selfregulate imprinting of the Polycomb group gene MEDEA in Arabidopsis. Curr Biol, 2006, 16: 486–492CrossRefGoogle Scholar
  65. 65.
    Baroux C, Gagliardini V, Page D R, et al. Dynamic regulatory interactions of Polycomb group genes: MEDEA autoregulation is required for imprinted gene expression in Arabidopsis. Genes Dev, 2006, 20: 1081–1086CrossRefGoogle Scholar
  66. 66.
    Haun W J, Danilevskaya O N, Meeley R B, et al. Disruption of imprinting by mu transposon insertions in the 5′ proximal regions of the Zea mays Mez1 locus. Genetics, 2009, doi:10.1534/genetics.108.093666Google Scholar
  67. 67.
    Slotkin R K, Vaughn M, Borges F, et al. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell, 2009, 136: 461–472CrossRefGoogle Scholar
  68. 68.
    Yadegari R, Drews G N. Female gametophyte development. Plant Cell, 2004, 16(Suppl): S133–S141CrossRefGoogle Scholar
  69. 69.
    Becker J D, Boavida L C, Carneiro J, et al. Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol, 2003, 133: 713–725CrossRefGoogle Scholar
  70. 70.
    Le Q, Gutierrez-MARCOS J F, Costa L M, et al. Construction and screening of subtracted cDNA libraries from limited populations of plant cells: a comparative analysis of gene expression between maize egg cells and central cells. Plant J, 2005, 44: 167–178CrossRefGoogle Scholar
  71. 71.
    Jullien P E, Mosquna A, Ingouff M, et al. Retinoblastoma and its binding partner MSI1 control imprinting in Arabidopsis. PLoS Biol, 2008, 6: e194CrossRefGoogle Scholar
  72. 72.
    Bicknell R A, Koltunow A M. Understanding apomixis: Recent advances and remaining conundrums. Plant Cell, 2004, 16(Suppl): S228–S245CrossRefGoogle Scholar
  73. 73.
    Goldberg R B, de Paiva G, Yadegari R. Plant embryogenesis: Zygote to seed. Science, 1994, 266: 605–614CrossRefGoogle Scholar
  74. 74.
    Sarkar K R, Coe E H. A genetic analysis of the origin of maternal haploids in maize. Genetics, 1966, 54: 453–464Google Scholar
  75. 75.
    Costa L M, Gutierrez-Marcos J F, Dickinson H G. More than a yolk: the short life and complex times of the plant endosperm. Trends Plant Sci, 2004, 9: 507–514CrossRefGoogle Scholar
  76. 76.
    Lin B Y. Ploidy barrier to endosperm development in maize. Genetics, 1984, 107: 103–115Google Scholar
  77. 77.
    Scott R J, Spielman M, Bailey J, et al. Parent-of-origin effects on seed development in Arabidopsis thaliana. Development, 1998, 125: 3329–3341Google Scholar
  78. 78.
    Pennington P D, Costa L M, Gutierrez-Marcos J F, et al. When genomes collide: aberrant seed development following maize interploidy crosses. Ann Bot (Lond), 2008, 101: 833–843CrossRefGoogle Scholar
  79. 79.
    Bushell C, Spielman M, Scott R J. The basis of natural and artificial postzygotic hybridization barriers in Arabidopsis species. Plant Cell, 2003, 15: 1430–1442CrossRefGoogle Scholar
  80. 80.
    Comai L, Tyagi A P, Winter K, et al. Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids Plant Cell, 2000, 12: 1551–1568CrossRefGoogle Scholar
  81. 81.
    Johnston S A, Hanneman R E, J R. Genetic control of Endosperm Balance Number (EBN) in the Solanaceae based on trisomic and mutation analysis. Genome, 1996, 39: 314–321CrossRefGoogle Scholar
  82. 82.
    Mcgrath J, Solter D. Inability of mouse blastomere nuclei transferred to enucleated zygotes to support development in vitro. Science, 1984, 226: 1317–1319CrossRefGoogle Scholar
  83. 83.
    Surani M A, Barton S C, Norris M L. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature, 1984, 308: 548–550CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.Warwick HRIUniversity of WarwickWellesbourneUK

Personalised recommendations