Chinese Science Bulletin

, 54:3367 | Cite as

Delamination and destruction of the North China Craton

  • Shan GaoEmail author
  • JunFeng Zhang
  • WenLiang Xu
  • YongSheng Liu


This article presents an overview on recent developments in studies of chemical and physical processes of lithospheric delamination with respect to destruction of the North China Craton. It is emphasized that the pyroxenite source resulting from interaction between eclogite-derived melt and peridotite is a direct consequence of delamination. The pyroxenite source thus formed has unique mineralogical and geochemical features, which characterize Mesozoic basalts of the North China Craton. Melt-peridotite interaction played an important role in refertilization of cratonic lithospheric mantle, leading to density increase, weakening and final destabilization of the North China Craton. The nature of the melt is the key to distinguish mechanisms of destructing this craton.


delamination North China Craton melt-peridotite interaction eclogite pyroxenite 


  1. 1.
    Wilde S A, Valley J W, Peck W H, et al. Evidence from detrital zircons for the existence of continental crust and oceans on the earth 4.4 Gyr ago. Nature, 2001, 409: 175–178CrossRefGoogle Scholar
  2. 2.
    Boyd F R, Gurney J J, Richardson S H. Evidence for a 150–200 km thick Archaean lithosphere from diamond inclusion thermobarometry. Nature, 1985, 315: 387–389CrossRefGoogle Scholar
  3. 3.
    Pollack H N. Cratonization and thermal evolution of the mantle. Earth Planet Sci Lett, 1986, 80: 175–182CrossRefGoogle Scholar
  4. 4.
    Sleep N H. Survival of Archean cratonal lithosphere. J Geophys Res, 2003, 108: doi:10.1029/2001JB000169Google Scholar
  5. 5.
    Sleep N H. Evolution of the continental lithosphere. Annu Rev Earth Planet Sci, 2005, 33: 369–393CrossRefGoogle Scholar
  6. 6.
    Carlson R W, Pearson D G, James D E. Physical, chemical, and chronological characteristics of continental mantle. Rev Geophys, 2005, 43: doi: 10.1029/2004RG000156Google Scholar
  7. 7.
    King S D. Archean cratons and mantle dynamics. Earth Planet Sci Lett, 2005, 234: 1–14CrossRefGoogle Scholar
  8. 8.
    Griffin W L, O’Reilly S Y, Afonso J C, et al. The Composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications. J Petrol, 2008, doi 10.1093/petrology/egn033Google Scholar
  9. 9.
    Foley S F. Rejuvenation and erosion of the cratonic lithosphere. Nat Geosci, 2008, 1: 503–510CrossRefGoogle Scholar
  10. 10.
    Fan W M, Menzies M A. Destruction of aged lower lithosphere and accretiob of asthenosphere mantle beneath eastern China. Geotect Metal, 1992, 16: 171–180Google Scholar
  11. 11.
    Menzies M A, Fan W M, Zhang M, Palaeozoic and Cenozoic lithoprobes and the loss of > 120 km of Archaean lithosphere, Sino-Korean craton, China. In: Prichard H M, Alabaster T, Harris N B W, et al. Magmatic Processes and Plate Tectonics. Geological Society Special Publication, 1993, 76: 71–78Google Scholar
  12. 12.
    Deng J F, Mo X X, Zhao H L, et al. Root and derooting of Eastern China lithosphere and reactivation of continents: Research project of Eastern Asian continental dynamics. Modern Geol, 1994, 8: 349–355Google Scholar
  13. 13.
    Menzies M A, Xu Y G. Geodynamics of the North China Craton. In: Flower M F J, Chung S L, Lo C H, et al, eds. Mantle Dynamics and Plate Interactions in East Asia. Am Geophys Union Geodyn Ser, 1998, 27: 155–165Google Scholar
  14. 14.
    Menzies M A, Xu Y G, Zhang H F, et al. Integration of geology, geophysics and geochemistry: A key to understanding the North China Craton. Lithos, 2007, 96: 1–21CrossRefGoogle Scholar
  15. 15.
    Griffin W L, Zhang A D, O’Reilly S Y, et al. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. In: Flower M F J, Chung S L, Lo C H, et al., eds. Mantle Dynamics and Plate Interactions in East Asia. Am Geophys Union Geodyn Ser, 1998, 27: 107–126Google Scholar
  16. 16.
    Zheng J P. Replacement of Mantle in Eastern China and Mesozoic-Cenozoic Lithosphere Thinning. Wuhan: China University of Geosciences Press, 1999Google Scholar
  17. 17.
    Fan W M, Zhang H F, Baker J, et al. On and off the north China craton: Where is the Archaean keel? J Petrol, 2000, 41: 933–950CrossRefGoogle Scholar
  18. 18.
    Xu Y G. Thermo-tectonic destruction of the Archean lithospheric keel beneath the Sino-Korean Craton in China: Evidence, Timing and Mechanism. Phys Chem Earth (A), 2001, 26: 747–757CrossRefGoogle Scholar
  19. 19.
    Liu Y S, Gao S, Lee C-T A, et al. Melt-peridotite interactions: Links between garnet pyroxenite and high-Mg# signature of continental crust. Earth Planet Sci Lett, 2005, 234: 39–57CrossRefGoogle Scholar
  20. 20.
    Zheng J P, Griffin W L, O’Reilly S Y, et al. Late Mesozoic-Eocene mantle replacement beneath the eastern North China Craton: Evidence from the Paleozoic and Cenozoic peridotite xenoliths. Inter Geol Rev, 2005, 47: 457–472CrossRefGoogle Scholar
  21. 21.
    Zheng J P, Sun M, Zhou M F, et al. Trace elemental and PGE geochemical constraints of Mesozoic and Cenozoic peridotitic xenoliths on lithospheric evolution of the North China Craton. Geochim Cosmochim Acta, 2005, 69: 3401–3418CrossRefGoogle Scholar
  22. 22.
    Zheng J P, Griffin W L, O’Reilly S Y. Mineral chemistry of garnet peridotites from Paleozoic, Mesozoic and Cenozoic lithosphere: Constraints on mantle evolution beneath eastern China. J Petrol, 2006, 47: 2233–2256CrossRefGoogle Scholar
  23. 23.
    Gao S, Rudnick R L, Carlson R W, et al. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth Planet Sci Lett, 2002, 198: 307–322CrossRefGoogle Scholar
  24. 24.
    Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China craton. Nature, 2004, 432: 892–897CrossRefGoogle Scholar
  25. 25.
    Wu F Y, Walker R J, Ren X W, et al. Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China. Chem Geol, 2003, 196: 107–129CrossRefGoogle Scholar
  26. 26.
    Wu F Y, Lin J Q, Wilde S A, et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet Sci Lett, 2005, 233: 103–119CrossRefGoogle Scholar
  27. 27.
    Zhang H F. Transformation of lithospheric mantle through peridotite-melt reaction: A case of Sino-Korean craton. Earth Planet Sci Lett, 2005, 237: 768–780CrossRefGoogle Scholar
  28. 28.
    Wu F Y, Walker R J, Yang Y H, et al. The chemical-temporal evolution of lithospheric mantle underlying the North China Craton. Geochim Cosmochim Acta, 2006, 70: 5013–5034CrossRefGoogle Scholar
  29. 29.
    Deng J F, Su S G, Niu Y L, et al. A possible model for the lithospheric thinning of North China Craton: Evidence from the Yanshanian (Jura-Cretaceous) magmatism and tectonism. Lithos, 2007, 96: 22–35CrossRefGoogle Scholar
  30. 30.
    Lu F X, Zheng J P, Zhang R S, et al. Phanerozoic mantle evolution in eastern North China Craton (in Chinese). Earth Sci Front, 2005, 12: 61–67Google Scholar
  31. 31.
    Zhai M G, Fan Q C, Zhang H F, et al. Lower crustal processes in the lithospheric thining: magma underplating, replacement and delamination. Acta Petrol Sin, 2005, 21: 1509–1526Google Scholar
  32. 32.
    Zhou X H. Some problems on Mesozoic-Cenozoic transformation and thining (in Chinese). Earth Sci Front, 2006, 13: 50–54Google Scholar
  33. 33.
    Zhai M G, Fan Q C, Zhang H F, et al. Lower crustal processes leading to Mesozoic lithospheric thinning beneath eastern North China: Underplating, replacement and delamination. Lithos, 2007, 96: 36–54CrossRefGoogle Scholar
  34. 34.
    Gao S, Rudnick R L, Xu W L, et al. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China craton. Earth Planet Sci Lett, 2008, 270: 41–53CrossRefGoogle Scholar
  35. 35.
    Yang J H, Wu F Y, Wilde S A, et al. Mesozoic decratonization of the North China block. Geology, 2008, 36: 467–470CrossRefGoogle Scholar
  36. 36.
    Liu D Y, Nutman A P, Compston W, et al. Remnants of 3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology, 1992, 20: 339–342CrossRefGoogle Scholar
  37. 37.
    Zheng J P, Griffin W L, O’Reilly S Y, et al. 3.6 Ga lower crust in central China: New evidence on the assembly of the North China Craton. Geology, 2005, 32: 229–232CrossRefGoogle Scholar
  38. 38.
    Chen G D. Examples of reactivation of Chinese plateforms and discussion on Cathysian Oldland. Geol Acta, 1956, 36: 239–272Google Scholar
  39. 39.
    Chen G D. Diwa Hypophysis, Reactivation Tectonics and Concept of Ore-forming Theoretical System. Changshai: Press of South China Industry University, 1996. 1–455Google Scholar
  40. 40.
    Zhang H F, Sun M, Zhou X H, et al. Mesozoic lithosphere destruction beneath the North China Craton: Evidence from major, trace element, and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contrib Mineral Petrol, 2002, 144: 241–253CrossRefGoogle Scholar
  41. 41.
    Zhang H F, Sun M, Zhou X H, et al. Secular evolution of the lithosphere beneath the eastern North China Craton: Evidence from Mesozoic basalts and high-Mg andesites. Geochim Cosmochim Acta, 2003, 67: 4373–4387CrossRefGoogle Scholar
  42. 42.
    Xu W L, Gao S, Wang Q H, et al. Mesozoic crustal thickening of the eastern North China Craton: Evidence from eclogite xenoliths and petrologic implications. Geology, 2006, 34: 721–724CrossRefGoogle Scholar
  43. 43.
    Xu W L, Hergt J M, Gao S, et al. Interaction of adakitic melt-peridotite: Implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton. Earth Planet Sci Lett, 2008, 265: 123–137CrossRefGoogle Scholar
  44. 44.
    Yang J H, Wu F Y, Wilde S A. A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China craton: An association with lithospheric thinning. Ore Geol Rev, 2003, 23: 125–152CrossRefGoogle Scholar
  45. 45.
    Rudnick R L, Gao S, Ling W L, et al. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China Craton. Lithos, 2004, 77: 609–637CrossRefGoogle Scholar
  46. 46.
    Tang Y J, Zhang H F, Ying J F. Asthenosphere-lithospheric mantle interaction in an extensional regime: Implication from the geochemistry of Cenozoic basalts from Taihang Mountains, North China Craton. Chem Geol, 2006, 233: 309–327.CrossRefGoogle Scholar
  47. 47.
    Xu Y G. Diachronous lithospheric thing of the North China Craton and formation of the Daxin’anling-Taihangshan gravity lineament. Lithos, 2007, 76: 281–298CrossRefGoogle Scholar
  48. 48.
    Yuan X C. Seismic structure of Qingling lithosphere and mushroomlike tectonic model. Sci. China Ser D-Earth Sci, 1996, 26: 209–215Google Scholar
  49. 49.
    Chen L, Zheng T Y, Xu W W. A thinned lithospheric image of the Tanlu Fault Zone, eastern China: constructed from wave equation based receiver function migration. J Geophys Res, 2006, 111: doi:10.1029/2005JB003974Google Scholar
  50. 50.
    Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publication, 1985Google Scholar
  51. 51.
    Hawkesworth C J, Kemp A I S. Evolution of the continental crust. Nature, 2006, 443: 811–817CrossRefGoogle Scholar
  52. 52.
    Hawkesworth C J, Kemp A I S. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem Geol, 2006, 226: 144–162CrossRefGoogle Scholar
  53. 53.
    Rudnick R L, Fountain D M. Nature and composition of the continental crust: A lower crustal perspective. Rev Geophys, 1995, 33: 267–309CrossRefGoogle Scholar
  54. 54.
    Moser D E, Flowers R M, Hart R J. Birth of the Kaapvaal tectosphere 3.08 billion years ago. Science, 2001, 291: 465–468CrossRefGoogle Scholar
  55. 55.
    Niu Y L. Generation and evolution of basaltic magmas: Some basic concepts and a new view on the origin of Mesozoic-Cenozoic basaltic volcanism in Eastern China. Geol J China Univ, 2005. 11: 9–46Google Scholar
  56. 56.
    Seber D, Barazangi M, Ibenbrahim A, et al. Geophysical evidence for lithospheric delamination beneath the Alboran Sea and Rif-Betic Mountains. Nature, 1996, 379: 785–790CrossRefGoogle Scholar
  57. 57.
    Calvert A, Sandvol E, Seber D, et al. Geodynamic evolution of the lithosphere and upper mantle beneath the Alboran region of the western Mediterranean: Constraints from travel time tomography. J Geophys Res, 2000, 105(B): 10871–10898CrossRefGoogle Scholar
  58. 58.
    Boyd O S, Jones C H, Sheehan A F. Foundering lithosphere imaged beneath the Southern Sierra Nevada, California, USA. Science, 2004, 305: 660–662CrossRefGoogle Scholar
  59. 59.
    Wu F Y, Xu Y G, Gao S, et al. Lithospheric thinning and destruction of the Nlorth China Craton. Acta Petrol Sin, 2008, 24: 1145–1174Google Scholar
  60. 60.
    Gao S, Jin Z M. Delamination and its geodynamic significance in crust-mantle evolution. Geol Tech Inf, 1997, 16: 1–9Google Scholar
  61. 61.
    Sobolev A V, Hofmann A W, Sobolev S V, et al. An olivine-free mantle source of Hawaiian shield basalts. Nature, 2005, 434: 590–597CrossRefGoogle Scholar
  62. 62.
    Sobolev A V, Hofmann A W, Kuzmin D V, et al. The amount of recycled crust in sources of mantle-derived melts. Science, 2007, 316: 412–417CrossRefGoogle Scholar
  63. 63.
    Arndt N T, Goldstein S L. An open boundary between lower continental crust and mantle: its role in crust formation and crustal recycling. Tectonophysics, 1989, 161: 201–212CrossRefGoogle Scholar
  64. 64.
    Kay R W, Kay S M. Creation and destruction of lower continental crust. Geol Rundschau, 1991, 80: 259–278CrossRefGoogle Scholar
  65. 65.
    Rudnick R L. Making continental crust. Nature, 1995, 378: 571–577CrossRefGoogle Scholar
  66. 66.
    Jull M, Kelemen P B. On the conditions for lower crustal convective instability. J Geophys Res, 2001, 106: 6423–6446CrossRefGoogle Scholar
  67. 67.
    Escrig S, Capmas F, Dupre B, et al. Osmium isotopic constraints on the nature of the DUPAL anomaly from Indian mid-ocean-ridge basalts. Nature, 2004, 431: 59–63CrossRefGoogle Scholar
  68. 68.
    Elkins-Tanton L T. Continental magmatism caused by lithospheric delamination. In: Foulger G R, Natland J H, Presnall D C, et al., eds. Plates, Plumes, and Paradigms. Geol Soc Am Spec Pap, 2005, 388: 449–462Google Scholar
  69. 69.
    Lustrino M. How the delamination and detachment of lower crust can influence basaltic magmatism. Earth Sci Rev, 2005, 72: 21–38CrossRefGoogle Scholar
  70. 70.
    Anderson D A. Large igneous provinces, delamination, and fertile mantle. Elements, 2006, 1: 271–275CrossRefGoogle Scholar
  71. 71.
    Anderson D A. Speculations on the nature and cause of mantle heterogeneity. Tectonophysics, 2006, 146: 7–22CrossRefGoogle Scholar
  72. 72.
    Bedard J H. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochim Cosmochim Acta, 2006, 70: 1188–1214CrossRefGoogle Scholar
  73. 73.
    Rudnick R L, Fountain D M. Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys, 1995, 33: 267–309CrossRefGoogle Scholar
  74. 74.
    Yaxley G M, Green D H. Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust. Schweiz Mineral Petrogr Mitt, 1998, 78: 243–255Google Scholar
  75. 75.
    Rapp R P, Shimizu N, Norman M D, et al. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem Geol, 1999, 160: 335–356CrossRefGoogle Scholar
  76. 76.
    Yaxley G M. Experimental study of the phase and melting relations of homogeneous basalt plus peridotite mixtures and implications for the petrogenesis of flood basalts. Contrib Mineral Petrol, 2000, 139: 326–338CrossRefGoogle Scholar
  77. 77.
    Kogiso T, Hirschmann M M. Experimental study of clinopyroxenite partial melting and the origin of ultra-calcic melt inclusions. Contrib Mineral Petrol, 2001, 142: 347–360CrossRefGoogle Scholar
  78. 78.
    Kogiso T, Hirschmann M M, Frost D J. High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts. Earth Planet Sci Lett, 2003, 216: 603–617CrossRefGoogle Scholar
  79. 79.
    Herzberg C. Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano. Nature, 2006, 444: 605–609CrossRefGoogle Scholar
  80. 80.
    McKenzie D, O’Nions R K. Mantle reserviors and oceanic basalts. Nature, 1983, 301: 229–231CrossRefGoogle Scholar
  81. 81.
    Liu Y S, Gao S, Kelemen P B, et al. Recycled lower continental crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in Eastern China. Geochim Cosmochim Acta, 2008, 72: 2349–2376CrossRefGoogle Scholar
  82. 82.
    Gao S, Zhang B R, Luo T C, et al. Chemical composition of the continental crust in the Qinling Orogenic Belt and its adjacent North China and Yangtze Cratons. Geochim Cosmochim Acta, 1992, 56: 3933–3950CrossRefGoogle Scholar
  83. 83.
    Gao S, Zhang B R, Jin Z M, et al. How mafic is the lower continental crust?. Earth Planet Sci Lett, 1998, 161: 101–117CrossRefGoogle Scholar
  84. 84.
    Gao S, Luo T C, Zhang B R, et al. Chemical composition of the continental crust as revealed by studies in East China. Geochim Cosmochim Acta, 1998, 62: 1959–1975CrossRefGoogle Scholar
  85. 85.
    Rapp R P, Watson E B. Dehydration melting of metabasalt at 8-32 kbar; implications for continental growth and crust-mantle recycling. J Petrol, 1995, 36: 891–931CrossRefGoogle Scholar
  86. 86.
    Wedepohl K H. The composition of the continental crust. Geochim Cosmochim Acta, 1995, 59: 1217–1232CrossRefGoogle Scholar
  87. 87.
    Kelemen P B, Hangho J K. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower Crust. In: Rudnick R L, eds. Treatise in Geochemistry: The crust, 2003, 3: 593–659Google Scholar
  88. 88.
    Rudnick R L, Gao S. Composition of the Continental Crust. In: Rudnick R L, eds. Treatise in Geochemistry: The crust, 2003, 3: 1–64Google Scholar
  89. 89.
    Rapp R P, Watson E B, Miller C F. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res, 1991, 51: 1–25CrossRefGoogle Scholar
  90. 90.
    Barth M G, Foley S F, Horn I. Partial melting in Archean subduction zones: constraints from experimentally determined trace element partition coefficients between eclogitic minerals and tonalitic melts under upper mantle conditions. Precambrian Res, 2002, 113: 323–340CrossRefGoogle Scholar
  91. 91.
    Rapp R P, Shimizu N, Norman M D. Growth of early continental crust by partial melting of eclogite. Nature, 2003, 425: 605–609CrossRefGoogle Scholar
  92. 92.
    Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 2005, 79: 1–24CrossRefGoogle Scholar
  93. 93.
    Xiong X L. Trace element evidence for growth of early continental crust by melting of rutile-bearing hydrous eclogite. Geology, 2006, 34: 945–948CrossRefGoogle Scholar
  94. 94.
    Kamenetsky V S, Maas R, Sushchevskaya N M, et al. Remnants of Gondwanan continental lithosphere in oceanic upper mantle: Evidence from the South Atlantic Ridge. Geology, 2001, 29: 243–246CrossRefGoogle Scholar
  95. 95.
    Kay R W. Aleutian magnesian andesites melts from subducted Pacific ocean crust. J Volcanol Geotherm Res, 1978, 4: 117–132CrossRefGoogle Scholar
  96. 96.
    Stern R A, Hanson G N. Archean high-Mg granodiorite: a derivative of light rare earth element-enriched monzodiorite of mantle origin. J Petrol, 1991, 32: 201–238CrossRefGoogle Scholar
  97. 97.
    Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 1993, 362: 144–146CrossRefGoogle Scholar
  98. 98.
    Martin H. Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 1999, 46: 411–429CrossRefGoogle Scholar
  99. 99.
    Xu J F, Shinjo R, Defant M J, et al. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology, 2002, 30: 1111–1114CrossRefGoogle Scholar
  100. 100.
    Tatsumi Y. Continental crust formation by crustal delamination in subduction zones and complementary accumulation of enriched mantle I component in the mantle. Geochem Geophy Geosys, 2000, No. 2000GC000094Google Scholar
  101. 101.
    Zhang Q, Jin W J, Wang Y L, et al. A discussion on model of continental lower crust delamination. Acta Petrol Sin, 2006, 22: 265–276Google Scholar
  102. 102.
    Percival J A, Pysklywe R N. Are Archean lithospheric keels inverted?. Earth Planet Sci Lett, 2007, 254: 393–403CrossRefGoogle Scholar
  103. 103.
    Schott B, Schmeling H. Delamination and detachment of a lithospheric root. Tectonophysics, 1998, 296: 225–247CrossRefGoogle Scholar
  104. 104.
    Morency C, Doin M P, Dumoulin C. Convective destabilization of a thickened continental lithosphere. Earth Planet Sci Lett, 2002, 202: 303–320CrossRefGoogle Scholar
  105. 105.
    Morency C, Doin M P. Numerical simulations of the mantle lithosphere delamination. J Geophys Res, 2004, 109: B03410, doi: 10. 1029/2003JB002414CrossRefGoogle Scholar
  106. 106.
    Djomani Y H P. The density structure of subcontinental lithosphere through time. Earth Planet Sci Lett, 2001, 184: 605–621CrossRefGoogle Scholar
  107. 107.
    Kukkonen I T, Kuusisto M, Lehtonen M, et al. Delamination of eclogitized lower crust: control on the crust-mantle boundary in the central Fennoscandian shield. Tectonophysics, 2008, 457: 111–127CrossRefGoogle Scholar
  108. 108.
    Wang Y, Zhang J, Jin Z, et al. Rehology of mafic granulite at high pressure and temperature: Implications for crust-mantle interactions. Eos Trans Am Geophys Union, 2008 89, Fall Meet. Suppl, abstract# V31C-2153Google Scholar
  109. 109.
    Kronenberg A K, Tullis J. Flow strengths of quartz aggregates: grain size and pressure effects due to hydrolytic weakening, J Geophys Res, 1984, 89: 4281–4297CrossRefGoogle Scholar
  110. 110.
    Jaoul O, Tullis J, Kronenberg A. The effect of varying water contents on the creep behaviour of Heavitreee Quartzite. J Geophys Res, 1984, 89: 4298–4312CrossRefGoogle Scholar
  111. 111.
    Hanse F D, Carter N L. Creep of selected crustal rocks at 1000 MPa. EOS Trans Am Geophys Union, 1982, 63: 437Google Scholar
  112. 112.
    Wilks K R, Carter N L. Rheology of some continental lower crustal rocks. Tectonophysics, 1990, 182: 57–77CrossRefGoogle Scholar
  113. 113.
    Zhang J, Green H W. Experimental investigation of eclogite rheology and fabrics at high pressure. J Metamorph Geol, 2007, 25: 97–117CrossRefGoogle Scholar
  114. 114.
    Hirth G, Kohlstedt D. Rheology of the upper mantle and the mantle wedge: A view from the experimentalists. In: Eiler J, ed. Inside the Subduction Factory: Geophysics Monograph Series. American Geophysical Union, Washington D C, 2003, 138: 83–105CrossRefGoogle Scholar
  115. 115.
    Zhang J, Wang Y, Jin Z, et al. Viscosity profile of the cratonic lithosphere of Eastern China and its implications for craton reactivation. Eos Trans Am Geophys Union, 2008, 89, Fall Meet. Suppl., abstract# V31C-2154Google Scholar
  116. 116.
    Jin Z M, Green H W, Zhou Y. Topology in partially molten mantle peridotite during ductile deformation. Nature, 1994, 372: 164–167CrossRefGoogle Scholar
  117. 117.
    Liu Y S, Gao S, Jin S Y, et al. Geochemistry of lower crustal xenoliths from Neogene Hannuoba Basalt, North China Craton: Implications for petrogenesis and lower crustal composition. Geochim Cosmochim Acta, 2001, 65: 2589–2604CrossRefGoogle Scholar
  118. 118.
    Li S, Mooney W D, Fan J. Crustal structure of mainland China from deep seismic sounding data. Tectonophysics, 2006, 420: 239–252CrossRefGoogle Scholar
  119. 119.
    Ji S, Wang Q, Salisbury M H. Composition and tectonic evolution of the Chinese continental crust constrained by Poisson’s ratio. Tectonophysics, 2009, 463: 15–30CrossRefGoogle Scholar
  120. 120.
    Zhang H F, Goldstein S, Zhou X H, et al. Evolution of subcontinental Lithospheric mantle beneath eastern China: Re-Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts. Contrib Mineral Petrol, 2008, 155: 271–293CrossRefGoogle Scholar
  121. 121.
    Zhang Q, Wang Y, Liu H T, et al. Temporal and spatial distribution and tectonic settings of adakities in China (in Chinese). Earth Sci Front, 2003, 10: 385–400Google Scholar
  122. 122.
    Yang W, Li S. Geochronology and geochemistry of the Mesozoic volcanic rocks in Western Liaoning: Implications for lithospheric thinning of the North China Craton. Lithos, 2008, 102: 88–117CrossRefGoogle Scholar
  123. 123.
    Huang F, Li S, Yang W. Contributions of the lower crust to Mesozoic mantle derived mafic rocks from the North China Craton: implications for Lithospheric thinning. In: Zhai M G, Windley B F, Kusky T M, et al., eds. Mesozoic Sub-Continental Lithospheric Thinning under Eastern Asian. Geol Soc Lond Spec Pub, 2007, 280: 55–75Google Scholar
  124. 124.
    Herzberg C, Asimow P D, Arndt N, et al. Temperatures in ambient mantle and plumes: constraints from basalts, picrites, and komatiites. Geochem Geophy Geosys, 2007, 8: Q02006. doi:10.1029/2006GC001390CrossRefGoogle Scholar
  125. 125.
    Zheng S, Hu Z C. Accurate determinations of Ni, Ca and Mn contents in olivine by electron microprobe and laser inductively coupled plasma spectrometry. Earth Sci, 2009, 34: 220–224Google Scholar
  126. 126.
    Hirose K. Melting experiments on lherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts. Geology, 1997, 25: 42–44CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Shan Gao
    • 1
    • 2
    Email author
  • JunFeng Zhang
    • 1
  • WenLiang Xu
    • 3
  • YongSheng Liu
    • 1
  1. 1.State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesWuhanChina
  2. 2.State Key Laboratory of Continental DynamicsNorthwest UniversityXi’anChina
  3. 3.College of Earth SciencesJilin UniversityChangchunChina

Personalised recommendations