Chinese Science Bulletin

, Volume 54, Issue 15, pp 2648–2655 | Cite as

Phylogenetic relationships and divergence times of the family Araucariaceae based on the DNA sequences of eight genes

  • Nian Liu
  • Yong Zhu
  • ZongXian Wei
  • Jie Chen
  • QingBiao Wang
  • ShuGuang Jian
  • DangWei Zhou
  • Jing Shi
  • Yong Yang
  • Yang Zhong
Articles/Molecular Revolution


Araucariaceae is one of the most primitive families of the living conifers, and its phylogenetic relationships and divergence times are critically important issues. The DNA sequences of 8 genes, i.e., nuclear ribosomal 18S and 26S rRNA, chloroplast 16S rRNA, rbcL, matK and rps4, and mitochondrial coxI and atp1, obtained from this study and GenBank were used for constructing the molecular phylogenetic trees of Araucariaceae, indicating that the phylogenetic relationships among the three genera of this family should be ((Wollemia, Agathis), Araucaria). On the basis of the fossil calibrations of Wollemia and the two tribes Araucaria and Eutacta of the genus Araucaria, the divergence time of Araucariaceae was estimated to be (308 ± 53) million years ago, that is, the origin of the family was in the Late Carboniferous rather than Triassic as a traditional view. With the same gene combination, the divergence times of the genera Araucaria and Agathis were (246 ± 47) and (61 ± 15) Ma, respectively. Statistical analyses on the phylogenetic trees generated by using different genes and comparisons of the divergence times estimated by using those genes suggested that the chloroplast matK and rps4 genes are most suitable for investigating the phylogenetic relationships and divergence times of the family Araucariaceae.


Araucariaceae nrDNA 18S rRNA nrDNA 26S rRNA cpDNA 16S rRNA cpDNA rbccpDNA matcpDNA rpsmtDNA coxmtDNA atpphylogeny divergence time 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Farjon A. World Checklist and Bibliography of Conifers. 2nd. Richmond: Royal Botanic Gardens, 2001Google Scholar
  2. 2.
    Anonymous “Australia Hails a Prehistoric Pine” and “’Fossil Tree’ Reveals Full Splendour.” Nature, 1994, 372: 712, 719Google Scholar
  3. 3.
    Anderson I. Pine “dinosaur” Lurks in Gorge. New Scientist, 1994, 144: 5Google Scholar
  4. 4.
    Andrew S. Wollemia nobilis: A Living Fossil and Evolutionary Enigma. Institute for Creation Research, 2006,
  5. 5.
    Jones W G., K D Hill and J M Allen Wollemia nobilis, a new living Australian genus and species in the Araucariaceae. Telopea, 1995, 6: 173–176Google Scholar
  6. 6.
    Chambers T C, Drinnan A N, McLoughlin S. Some morphological features of wollemi pine (Wollemia nobilis: Araucariaceae) and their comparison to Cretaceous plant fossils. Int J Plant Sci, 1998, 159: 160–171CrossRefGoogle Scholar
  7. 7.
    Setoguchi H, Ohsawa T A, Pintaud J C, et al. Phylogenetic relationships within Araucariaceae based on rbcL gene sequences. Am J Bot, 1998, 85: 1507–1516CrossRefGoogle Scholar
  8. 8.
    Kershaw P, Wagstaff B. The southern conifer family Araucariaceae: History, status, and value for palaeoenvironmental reconstruction. Ann Rev Ecol Syst, 2001, 32: 397–414CrossRefGoogle Scholar
  9. 9.
    Cantrill D J, Raine J I. Wairarapaia mildenhallii gen. et spec. nov., a new Araucarian cone related to Wollemia from the Cretaceous (Albian-Cenomanian) of New Zealand. Int J Plant Sci, 2006, 167: 1259–1269CrossRefGoogle Scholar
  10. 10.
    Gilmore S, Hill K D. Relationships of the Wollemi Pine (Wollemia nobilis) and a molecular phylogeny of the Araucariaceae. Telopea, 1997, 7: 275–291Google Scholar
  11. 11.
    Stefanovi S, Jager M, Deutsch J, et al. Phylogenetic relationships of conifers inferred from partial 28S rRNA gene sequences. Am J Bot, 1998, 85: 688–697CrossRefGoogle Scholar
  12. 12.
    Rydin C, Kallersjo M, Friis E M. Seed plant relationships and the systematic position of Gnetales based on nuclear and chloroplast DNA: Conflicting data, rooting problems and the monophyly of conifers. Int J Plant Sci, 2002, 163: 197–214CrossRefGoogle Scholar
  13. 13.
    Chaw S M, Parkinson C L, Cheng Y, et al. Seed plant phylogeny inferred from all three-plant genomes: Monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc Natl Acad Sci USA, 2000, 97: 4086–4091CrossRefGoogle Scholar
  14. 14.
    Bowe M, Coat G, Claude W D. Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales closest relatives are conifer. Proc Natl Acad Sci USA, 2000, 97: 4092–4097CrossRefGoogle Scholar
  15. 15.
    Hart J A. A cladistic analysis of conifers: Preliminary results. J Arnold Arboretum, 1987, 68: 269–307Google Scholar
  16. 16.
    Price R A, Thomas J, Strauss S, et al. Familial relationships of the conifers from rbcL sequence data. Am J Bot, 1993, 80: 172CrossRefGoogle Scholar
  17. 17.
    Miller C N. The origin of modern conifer families. In: Beck C B, ed. Origin and Evolution of Gymnosperms. New York: Columbia University Press, 1988. 448–486Google Scholar
  18. 18.
    Nixon K C, Crepet W L, Stevenson D, et al. A reevaluation of seed plant phylogeny. Ann Missouri Bot Gard, 1994, 81: 484–533CrossRefGoogle Scholar
  19. 19.
    Doyle J J, Doyle J L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull, 1987, 19: 11–15Google Scholar
  20. 20.
    Rydin C, Pedersen K R, Friis E M. On the evolutionary history of Ephedra: Cretaceous fossils and extant molecules. Proc Natl Acad Sci USA, 2004, 101: 16571–16576CrossRefGoogle Scholar
  21. 21.
    Ickert-Bond S M, Wojciechowski M E. Phylogenetic relationships in Ephedra (Gnetales): Evidence from nuclear and chloroplast DNA sequence data. Syst Bot, 2004, 29: 834–849CrossRefGoogle Scholar
  22. 22.
    Gernano J, Klein A S. Species-specific nuclear and chloroplast single nucleotide polymorphisms to distinguish Picea glauca, P. mariana and P. rubens. Theor Appl Genet, 1999, 99: 37–49CrossRefGoogle Scholar
  23. 23.
    Thompson J D, Gibson T J, Plewniak F, et al. The ClustaX windows interface: Flexible strategies for multiple sequences alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 24: 4876–4882CrossRefGoogle Scholar
  24. 24.
    Posada D, Crandall K A. Modeltest: Testing the model of DNA substitution. Bioinformatics, 1998, 14: 817–818CrossRefGoogle Scholar
  25. 25.
    Guindon S, Lethiec F, Duroux P, et al. PHYML Online — a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res, 2005, 33(Suppl): W557–W559CrossRefGoogle Scholar
  26. 26.
    Swofford D L. PAUP*: Phylogenetic anlysis using parsimony (* and other methods), Version 4. Sinauer Associates, Sunderland, Massachusetts, 2003Google Scholar
  27. 27.
    Shimodaira H, Hasegawa M. CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics, 2001, 17: 1246–1247CrossRefGoogle Scholar
  28. 28.
    Hill R S, Brodribb T J. Southern conifers in time and space. Austr J Bot, 1999, 47: 639–696CrossRefGoogle Scholar
  29. 29.
    Yang Z. PAML 4: A program package for phylogenetic analysis by maximum likelihood. Mol Biol Evol, 2007, 24: 1586–1591CrossRefGoogle Scholar
  30. 30.
    de Jersey N. Triassic spores and pollen grains from the Clematis Sanstone. Geol Surv Queensland Austr Publ, 1968, 338(Palaeont): 14: 1–44Google Scholar
  31. 31.
    Bamford M K, Philippe M. Jurassic-Early Cretaceous Gondwanan homoxylous woods: A nomenclatural revision of the genera with taxonomic notes. Rev Palaeobot Palynol, 2001, 113: 287–297CrossRefGoogle Scholar
  32. 32.
    Pires E F, Guerra-Sommer M. Sommerxylon spiralosus from the Upper Triassic in southernmost Parana Basin (Brazil): A new taxon with taxacean affinity. Anais Acad Bras Cien, 2004, 76: 595–609Google Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Nian Liu
    • 1
  • Yong Zhu
    • 1
  • ZongXian Wei
    • 2
  • Jie Chen
    • 1
  • QingBiao Wang
    • 1
  • ShuGuang Jian
    • 4
  • DangWei Zhou
    • 5
  • Jing Shi
    • 1
  • Yong Yang
    • 6
  • Yang Zhong
    • 1
    • 3
  1. 1.Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life SciencesFudan UniversityShanghaiChina
  2. 2.Lushan Botanical GardenChinese Academy of SciencesLushanChina
  3. 3.Shanghai Center for Bioinformation TechnologyShanghaiChina
  4. 4.South China Botanical GardenChinese Academy of SciencesGuangzhouChina
  5. 5.Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
  6. 6.Laboratory of Systematic and Evolutionary Botany, Institute of BotanyChinese Academy of SciencesBeijingChina

Personalised recommendations