Chinese Science Bulletin

, 54:2221

Enhanced parametric amplification in slow-light photonic crystal waveguides

Articles/Optics

Abstract

We demonstrate both theoretically and numerically that slow light can enhance the parametric process of silicon in photonic crystal line-defect waveguides. Specifically, to get the desired gain, the pump power for a given gain medium length or the gain medium length for given pump power can be reduced by (c/vgn)2 when slow light waveguides are used, where n is the material index of conventional waveguide, vg is the group velocity of the slow light waveguide and c is the light velocity in vacuum.

Keywords

nonlinear photonic crystals slow light four-wave mixing finite difference time domain 

References

  1. 1.
    Joannopoulos J D, Meade R D, Win J N. Photonic Crystals: Molding the Flow of Light. Princeton: Princeton University Press, 1995Google Scholar
  2. 2.
    McMillan J F, Yang X, Panoiu N C, et al. Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides. Opt Lett, 2006, 31: 1235–1237CrossRefGoogle Scholar
  3. 3.
    Wang Z, Fan S. Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines. Phys Rev E, 2003, 68: 066616Google Scholar
  4. 4.
    Karalis A, Johnson S G, Joannopoulos J D. Discrete-mode cancellation mechanism for high-Q integrated optical cavities with small modal volume. Opt Lett, 2004, 29: 2309–2311CrossRefGoogle Scholar
  5. 5.
    Vlasov Y A, O’Boyle M, Hamann H F, et al. Active control of slow light on a chip with photonic crystal waveguides. Nature, 2005, 438: 65–69CrossRefGoogle Scholar
  6. 6.
    Fan S, Joannopoulos J D. Analysis of guided resonances in photonic crystal slabs. Phys Rev B, 2002, 65: 235112Google Scholar
  7. 7.
    Baba T, Mori D. Slow light engineering in photonic crystals. J Phys D: Appl Phys, 2007, 40: 2659–2665CrossRefGoogle Scholar
  8. 8.
    Frandsen L H, Lavrinenko A V, Fage-Pedersen J, et al. Photonic crystal waveguides with semi-slow light and tailored dispersion properties. Opt Express, 2006, 14: 9444–9450CrossRefGoogle Scholar
  9. 9.
    Yang X, Wong C W. Design of photonic band gap nanocavities for stimulated Raman amplification and lasing in monolithic silicon. Opt Express, 2005, 13: 4723–4730CrossRefGoogle Scholar
  10. 10.
    Ibanescu M, Johnson S G, Roundy D, et al. Dynamic nonlinear effect on lasing in a random medium. Phys Rev Lett, 2004, 92: 063903Google Scholar
  11. 11.
    Notomi M, Yamada K, Shinya A, et al. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys Rev Lett, 2001, 87: 253902Google Scholar
  12. 12.
    Gersen H, Karle T J, Engelen R J P, et al. Real-space observation of ultraslow light in photonic crystal waveguides. Phys Rev Lett, 2005, 94: 073903Google Scholar
  13. 13.
    Sakoda S. Optical Properties of Photonic Crystals. Berlin: Springer, 2001Google Scholar
  14. 14.
    Sakoda K. Enhanced light amplification due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals. Opt Express, 1999, 4: 167–176CrossRefGoogle Scholar
  15. 15.
    Soljacic M, Johnson S G, Fan S, et al. Photonic-crystal slow-light enhancement of nonlinear phase sensitivity. J Opt Soc Am B, 2002, 19: 2052–2059CrossRefGoogle Scholar
  16. 16.
    Stolen R H, Bjorkholm J E. Parametric amplification and frequency conversion in optical fibers. IEEE J Quant Electron, 1982, 18: 1062–1072CrossRefGoogle Scholar
  17. 17.
    Agrawal G P. Nonlinear Fiber Optics. Oxford: Academic Press, 1995Google Scholar
  18. 18.
    Foster M A, Turner A C, Sharping J E, et al. Broad-band optical parametric gain on a silicon photonic chip. Nature, 2006, 441: 960–963CrossRefGoogle Scholar
  19. 19.
    Snyder A W, Love J D. Optical Waveguide Theory. London: Chapman-Hall, 1983Google Scholar
  20. 20.
    Farjadpour A, Roundy D, Rodriguez A, et al. Improving accuracy by subpixel smoothing in the finite-difference time domain. Opt Lett, 2006, 31: 2972–2974CrossRefGoogle Scholar
  21. 21.
    Chen X, Panoiu N C, Osgood R M. Theory of Raman-mediated pulsed amplification in silicon-wire waveguides. IEEE J Quant Electron, 2006, 42: 160–170CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations