Advertisement

Chinese Science Bulletin

, Volume 55, Issue 2, pp 212–220 | Cite as

Astronomically modulated late Pliocene equatorial Pacific climate transition and Northern Hemisphere ice sheet expansion

  • WenTao MaEmail author
  • Jun TianEmail author
  • QianYu Li
Articles Oceanology

Abstract

The equatorial Pacific underwent a significant climate transition during the late Pliocene, which is characterized by cooling of global sea surface temperatures (SSTs) and formation of a marked SST gradient between the eastern and western equatorial Pacific. Moreover, this transition was nearly synchronous with the late Pliocene Northern Hemisphere glaciation. Probing the relationship among solar insolation, low and high latitude processes is the key to unravel the mechanism of this climate transition. A series of statistical methods were used in this study to analyze the orbital components of the equatorial Pacific SST and global ice volume records for the past 5 Ma. We found that integrated solar insolation rather than the monthly mean insolation is the primary external forcing of the late Pliocene climate transition, and that on orbital time scale the SSTs of the eastern and western equatorial Pacific display consistent change rather than a “seesaw” pattern. Changes of Earth’s orbital configuration have been responsible for this climate transition whereas the positive feedback effects of atmospheric CO2 concentration have further cooled the global climate since the early Cenozoic.

Keywords

SST astronomical forcing equatorial Pacific late Pliocene insolation evolutive spectrum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 2001, 292: 686–693CrossRefGoogle Scholar
  2. 2.
    Dowsett H, Barron J, Poore R. Middle Pliocene sea surface temperatures: a global reconstruction. Marine Micropaleontol, 1996, 27: 13–25CrossRefGoogle Scholar
  3. 3.
    Robinson M M, Dowsett H J, Dwyer G S, et al. Reevaluation of Mid-Pliocene North Atlantic sea surface temperatures. Paleoceanography, 2008, 23, doi: 10.1029/2008PA001608Google Scholar
  4. 4.
    Haywood A M, Valdes P J, Sellwood B W. Global scale palaeoclimate reconstruction of the middle Pliocene climate using the UKMO GCM: initial results. Glob Planet Change, 2000, 25: 239–256CrossRefGoogle Scholar
  5. 5.
    Lunt D J, Foster G L, Haywood A M, et al. Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 level. Nature, 2008, 454: 1102–1106CrossRefGoogle Scholar
  6. 6.
    Shackleton N J, Backman J, Zimmerman H, et al. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic. Nature, 1984, 307: 620–623CrossRefGoogle Scholar
  7. 7.
    Haug G H, Sigman, D M, Tiedemann R, et al. Onset of permanent stratification in the subarctic Pacific Ocean. Nature, 1999, 401: 779–782CrossRefGoogle Scholar
  8. 8.
    Wara M W, Ravelo A C, Delaney, M L. Permanent El Niño-like conditions during the Pliocene warm period. Science, 2005, 309: 758–761CrossRefGoogle Scholar
  9. 9.
    Lawrence K T, Liu Z H, Herbert T D. Evolution of the eastern tropical Pacific through Plio-Pleistocene glaciation. Science, 2006, 312: 79–83CrossRefGoogle Scholar
  10. 10.
    Ravelo A C, Andreasen D H, Lyle M, et al. Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature, 2004, 429: 263–267CrossRefGoogle Scholar
  11. 11.
    Molnar P, Cane M A. El Niño’s tropical climate and teleconnections as a blueprint for pre-Ice Age climates. Paleoceanography, 2002, 17(2), doi: 10.1029/2001PA000663Google Scholar
  12. 12.
    Philander S G, Fedorov A V. Role of tropics in changing the response to Milankovich forcing some three million years ago. Paleoceanography, 2003, 18, doi: 10.1029/2002PA000837Google Scholar
  13. 13.
    Medina-Elizalde M, Lea D W. The mid-Pliocene transition in the tropical Pacific. Science, 2005, 310: 1009–1012CrossRefGoogle Scholar
  14. 14.
    Berger A. Long-term variation of daily insolation and Quaternary climate changes. J Clim Atm Sci, 1978, 35: 2362–2367CrossRefGoogle Scholar
  15. 15.
    Loutre M F, Paillard D, Vimeux F, et al. Does mean annual insolation have the potential to change the climate? Earth Planet Sci Lett, 2004, 221: 1–14CrossRefGoogle Scholar
  16. 16.
    Laskar J, Robutel P, Joutel F, et al. A long term numerical solution for the insolation quantities of the Earth. Astron Astrophys, 2004, 428: 261–285CrossRefGoogle Scholar
  17. 17.
    Blackman R B, Tukey J W. The Measurement of Power Spectra from the Point of View of Communication Engineering. New York: Dover, 1958Google Scholar
  18. 18.
    Thomson D J. Spectrum estimation and harmonic analysis. In: Proceedings of the IEEE, 1982, 79: 1055–1096CrossRefGoogle Scholar
  19. 19.
    Ghil M, Allen M R, Dettinger M D, et al. Advanced spectral methods for climate time series. Rev Geophys, 2002, 40, doi: 10.1029/2000RG000092Google Scholar
  20. 20.
    Mclntyre A, Molfino B. Forcing of Atlantic equatorial and subpolar millennial cycles by precession. Science, 1996, 274: 1867–1870CrossRefGoogle Scholar
  21. 21.
    Beaufort L, Lancelot Y, Camberlin P, et al. Insolation cycles as a major control equatorial Indian Ocean primary production. Science, 1997, 278: 1451–1454CrossRefGoogle Scholar
  22. 22.
    Beaufort L, de Garidel-Thoron T, Mix A C, et al. ENSO-like forcing on oceanic primary production during the Late Pleistocene. Science, 2001, 293: 2440–2444CrossRefGoogle Scholar
  23. 23.
    Huybers P. Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science, 2006, 313: 508–511CrossRefGoogle Scholar
  24. 24.
    Nisancioglu K H. Modeling the impact of atmospheric moisture transport on global ice volume. PhD Thesis, MIT, 2004Google Scholar
  25. 25.
    Fedorov A V, Dekens P S, McCarthy M, et al. The Pliocene paradox (Mechanisms for a permanent El Niño). Science, 2006, 312: 1485–1489CrossRefGoogle Scholar
  26. 26.
    Imbrie J, Boyle E A, Clemens, S C, et al. On the structure and origin of major glaciation cycles 1. Linear responses to Milankovitch Forcing. Paleoceanography, 1992, 7: 701–738CrossRefGoogle Scholar
  27. 27.
    Haug G H, Tiedemann R. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature, 1998, 393: 673–676CrossRefGoogle Scholar
  28. 28.
    Driscoll N W, Haug G H. A short circuit in thermohatine circutation: A cause for Northern Hemisphere glaciation? Science, 1998, 282: 436–438CrossRefGoogle Scholar
  29. 29.
    Haug G H, Ganopolski A, Sigman D M, et al. North Pacific seasonality and the glaciation of North America 2.7 million years ago. Nature, 2005, 433: 821–825CrossRefGoogle Scholar
  30. 30.
    Vincent E, Berger W H. Carbon dioxide and polar cooling in the Miocene: the Monterey hypothesis. In Sundquist, E T, Broecker, W S, eds. The carbon cycle and atmospheric CO2: Natural Variations Archean to Present. Washington: Amer Geophys Union Geophys Monogr, 1985, 32: 455–468Google Scholar
  31. 31.
    Raymo M E, Ruddiman W F. Tectonic forcing of late Cenozoic climate. Nature, 1992, 359: 117–122CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.State Key Laboratory of Marine GeologyTongji UniversityShanghaiChina

Personalised recommendations