Chinese Science Bulletin

, Volume 54, Issue 8, pp 1334–1339 | Cite as

Investigation of gas concentration cell based on LiSiPO electrolyte and Li2CO3, Au electrode

Articles/Chemical Engineering

Abstract

Solid lithium ion conducting electrochemical cells using LiSiPO as solid electrolyte and Li2CO3 mixed with Au as electrodes were prepared and employed as chemical sensors for the detection of CO2 gas. The EMF of the cell depends on the concentration of CO2 in air according to the partial pressure dependence of Nernst’s law in the investigated range from 100 to 2000 ppm over the temperature range from 473 K to 673 K.

Keywords

CO2 sensor LiSiPO solid lithium ion conductor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Singh K, Ambekar P, Bhoga S S. An investigation of Na2CO3-ABO3 (A=Li/K/Ba and B=Nb/Ti) heterogeneous solid electrolyte systems for electrochemical CO2 gas sensor application. Solid State Ioincs, 1999, 122: 191–196CrossRefGoogle Scholar
  2. 2.
    Yao S, Miura N, Miura N. Solid electrolyte CO2 sensor using binary carbonate electrode. Chem Letters, 1990, 227: 2033–2036CrossRefGoogle Scholar
  3. 3.
    Liu J, Weppner W. Kinetic principles for new types of solid state ionic gas sensors. Solid State Ionics, 1992, 53–56(1): 18–23Google Scholar
  4. 4.
    Miura N, Yao S, Shimizu Y, et al. High-performance solid-electrolyte carbon dioxide sensor with a binary carbonate electrode. Sensor & Actuators B, 1992, 9(3): 165–170CrossRefGoogle Scholar
  5. 5.
    Yamazoe N, Hosohara S, Fukuda T, et al. Gas sensing interfaces of solid electrolyte based carbon dioxide sensors attached with metal carbonate. Sensor & Actuators B, 1996, 34: 361–366CrossRefGoogle Scholar
  6. 6.
    Alonso-Porta M, Kumar R V. Use of NASICON/Na2CO3 system for measuring CO2. Sensor & Actuators B, 2000, 71(3): 173–178CrossRefGoogle Scholar
  7. 7.
    Imanaka N, Kawasato T, Adachi G. A carbon dioxide gas sensor probe based on a lithium ionic conductor. Chem. Letters, 1990, 4: 497–500Google Scholar
  8. 8.
    Lee C, Akbar S A, Park C O. Potentiometric CO2 gas sensor with lithium phosphorous oxynitride electrolyte. Sensor & Actuators B, 2001, 80(3): 234–242CrossRefGoogle Scholar
  9. 9.
    Zhang Y C, Tagawa H, Asakura S, et al. Solid-state CO2 sensor with Li2CO3-Li3PO4-LiAlO2 electrolyte and LiCoO2-Co3O4 as solid reference electrode. J Electrochem Soc, 1997, 144(12): 4345–4350CrossRefGoogle Scholar
  10. 10.
    Kim D, Yoon J, Park H, et al. Fabrication and characteristics of CO2-gas sensor using Li2CO3-Li3PO4-Al2O3 electrolyte and LiMn2O4 reference electrode. Sensor & Actuators B, 2001, 76: 594–599CrossRefGoogle Scholar
  11. 11.
    Schaf O. Reference electrode formation in potentiometric CO2 sensors with alkali ion conducting alumosilicate glasses as solid electrolytes. Ionics, 1996, 2(3–4): 274–281CrossRefGoogle Scholar
  12. 12.
    Lee C, Akbar S A, Park C O. Potentiometric CO2 gas sensor with lithium phosphorous oxynitride electrolyte. Sensor & Actuators B, 2001, 80: 234–242CrossRefGoogle Scholar
  13. 13.
    Park C O, Lee C, Akbar S A, et al. The origin of oxygen dependence in a potentiometric CO2 sensor with Li-ion conducting electrolytes. Sensor & Actuators B, 2003, 88(1): 53–59CrossRefGoogle Scholar
  14. 14.
    Hu Y W, Raistrick I D, Huggins R A. Ionic conductivity of lithium phosphate-doped lithium orthosilicate. Mater Res Bull, 1976, 11(10): 1227–1230CrossRefGoogle Scholar
  15. 15.
    Hu Y W, Raistrick I D, Huggins R A. Ionic conductivity of lithium orthosilicate-lithium phosphate solid solutions. J Electrochem Soc, 1977, 124(8): 1240–1242CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.Faculty of EngineeringChristian-Albrechts UniversityKielGermany
  2. 2.Faculty of Chemical EngineeringHarbin Institute of Technology at WeihaiWeihaiChina

Personalised recommendations