Chinese Science Bulletin

, Volume 54, Issue 7, pp 1137–1142

TiO2-based building materials: Above and beyond traditional applications

Progress/Environmental Science

Abstract

In the 1910s, TiO2 began to be used in building materials as pigments and opacifier due to its excellent optical property. Since the photocatalytic property of TiO2 was observed in 1972, its application field was expanded to air cleaning and sterilization. Thereafter, people added TiO2 into building materials to develop novel and facile building materials. These materials were widely used for air cleaning, sterilization, self-cleaning, anti-fogging, decoration, and building cooling. The combination of building and other functions can serve simultaneously. Although TiO2-based building materials have bright prospects, some aspects such as improving the stability and enhancing photoactive performance of the materials are of importance for future research.

Keywords

TiO2 building materials photocatalysis photoinduced superhydrophilicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carp O, Huisman C L, Reller A. Photoinduced reactivity of titanium dioxide. Prog Solid State Ch, 2004, 32(1–2): 33–177CrossRefGoogle Scholar
  2. 2.
    Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37–38CrossRefGoogle Scholar
  3. 3.
    Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. Phys Chem, 1977, 81: 1484–1488CrossRefGoogle Scholar
  4. 4.
    Matsunaga T, Tomoda R, Nakajima T, et al. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett 1985, 29: 211–214CrossRefGoogle Scholar
  5. 5.
    Wang R, Hashimoto K, Fujishima A, et al. Light-induced amphiphilic surfaces. Nature, 1997, 388: 431–432CrossRefGoogle Scholar
  6. 6.
    Poon C S, Cheung E. NO removal efficiency of photocatalytic paving blocks prepared with recycled materials. Constr Build Mater, 2007, 21(8): 1746–1753CrossRefGoogle Scholar
  7. 7.
    Jun T S, Kang G M, Wi S Y. Paint composition for antibiosis and VOCs removal. KR Patent, KR2001100052-A, 2001-11-14Google Scholar
  8. 8.
    Shang G, Zhou J, Zhao F, et al. Sunlight controlled self cleaning glass and its producing method. CN Patent, CN1944310-A, 2007-4-11Google Scholar
  9. 9.
    Wang H, Wang J, Yang F. Antifogging self-cleaning glass and preparation method. CN Patent, CN1872758-A, 2006-12-06Google Scholar
  10. 10.
    Lackhoff M, Prieto X, Nestle N, et al. Photocatalytic activity of semiconductor—modified cement-influence of semiconductor type and cement ageing. Appl Catal B, 2003, 43(3): 205–216CrossRefGoogle Scholar
  11. 11.
    Berto A M. Ceramic tiles: Above and beyond traditional applications. J Eur Ceram Soc, 2007, 27(2-3): 1607–1613CrossRefGoogle Scholar
  12. 12.
    Lee J H. Environmental construction materials fixing titanium dioxide decomposing nitrogen oxide (NOx). KR Patent, KR2002058946-A, 2002-6-12Google Scholar
  13. 13.
    Qian K, Zhang Y P, Little J C, et al. Dimensionless correlations to predict VOC emissions from dry building materials. Atmos Environ, 2007, 41(2): 352–359CrossRefGoogle Scholar
  14. 14.
    Zabiegala B. Organic compounds in indoor environments. Pol J Environ Stud, 2006, 15(3): 383–393Google Scholar
  15. 15.
    Wu Z B, Gu Z L, Zhao W R, et al. Photocatalytic oxidation of gaseous benzene over nanosized TiO2 prepared by solvothermal method. Chin Sci Bull, 2007, 55(22): 3601–3067Google Scholar
  16. 16.
    Dechakiatkrai C, Chen J, Lynam C, et al. Photocatalytic oxidation of methanol using titanium dioxide/single-walled carbon nanotube composite. J Electrochem Soc, 2007, 154(5): 407–411CrossRefGoogle Scholar
  17. 17.
    Hung W C, Fu S H, Tseng J J, et al. Study on photocatalytic degradation of gaseous dichloromethane using pure and iron ion-doped TiO2 prepared by the sol-gel method. Chemosphere, 2007, 66(11): 2142–2151CrossRefGoogle Scholar
  18. 18.
    Alberici R M, Canela M C, Eberlin M N, et al. Catalyst deactivation in the gas phase destruction of nitrogen-containing organic compounds using TiO2/UV-VIS. Appl Catal B, 2001, 30(3–4): 389–397CrossRefGoogle Scholar
  19. 19.
    Portela R, Sanchez B, Coronado J M. Photocatalytic oxidation of H2S on TiO2 and TiO2-ZrO2 thin films. J Adv Oxid Tech, 2007, 10(2): 375–380Google Scholar
  20. 20.
    Dong Y C, Bai Z P, Liu R H, et al. Decomposition of indoor ammonia with TiO2-loaded cotton woven fabrics prepared by different textile finishing methods. Atmos Environ, 2007, 41(15): 3182–3192CrossRefGoogle Scholar
  21. 21.
    Wang H Q, Wu Z B, Zhao W R, et al. Photocatalytic oxidation of nitrogen oxides using TiO2 loading on woven glass fabric. Chemosphere, 2007, 66(1): 185–190CrossRefGoogle Scholar
  22. 22.
    Legrini O, Oliveros E, Braun A M. Photochemical processes for water treatment. Chem Rev, 1993, 93(2): 671–698CrossRefGoogle Scholar
  23. 23.
    Ao C H, Lee S C. Enhancement effect of TiO2 immobilized on activated carbon filter for the photodegradation of pollutants at typical indoor air level. Appl Catal B, 2003, 44(3): 191–205CrossRefGoogle Scholar
  24. 24.
    Zhang Y P, Yang R, Zhao R Y. A model for analyzing the performance of photocatalytic air cleaner in removing volatile organic compounds. Atmos Environ, 2003, 37(24): 3395–3399CrossRefGoogle Scholar
  25. 25.
    Yang R, Zhang Y P, Zhao R Y. An improved model for analyzing the performance of photocatalytic oxidation reactors in removing volatile organic compounds and its application. J Air Waste Manage, 2004, 54(12): 1516–1524Google Scholar
  26. 26.
    Cassar L. Photocatalysis of cementitious materials: Clean buildings and clean air. Mrs Bull, 2004, 29(5): 328–331Google Scholar
  27. 27.
    Sopyan I, Murasawa S, Hashimoto K, et al. Highly efficient TiO2 film photocatalyst-degradation of gaseous acetaldehyde. Chem Lett, 1994 (4): 723–726Google Scholar
  28. 28.
    Mellott N P, Durucan C, Pantano C G, et al. Commercial and laboratory prepared titanium dioxide thin films for self-cleaning glasses: Photocatalytic performance and chemical durability. Thin Solid Films, 2006, 502(1–2): 112–120CrossRefGoogle Scholar
  29. 29.
    Liu C X, Nakano K, Obuchi E, et al. Photocatalytic decomposition of formaldehyde using titania coated lime tile. J Adv Oxid Tech, 2007, 10(1): 11–16Google Scholar
  30. 30.
    Salthammer T, Fuhrmann F. Photocatalytic surface reactions on indoor wall paint. Environ Sci Technol, 2007, 41(18): 6573–6578CrossRefGoogle Scholar
  31. 31.
    Taoda H, Fukaya M, Watanabe E, et al. VOC decomposition by photocatalytic wall paper. Mater Sci Forum, 2006, 510–511: 22–25CrossRefGoogle Scholar
  32. 32.
    Dos S V, Kondo M M. TiO2 immobilization onto concrete: chloroform and phenol photodegradation. Quim Nova, 2006, 29(2): 251–255Google Scholar
  33. 33.
    Maggos T, Bartzis J G, Liakou M, et al. Photocatalytic degradation of NOx gases using TiO2-containing paint: A real scale study. J Hazard Mater, 2007, 146: 668–673CrossRefGoogle Scholar
  34. 34.
    Cassar L, Pepe C. Hydraulic binder and cement compositions containing photocatalyst particles. US Patent, US6409821B1, 2002-6-25Google Scholar
  35. 35.
    Maggos T, Bartzis J G, Leva P, et al. Application of photocatalytic technology for NOx removal. Appl Phys A-Mater, 2007, 89(1): 81–84CrossRefGoogle Scholar
  36. 36.
    Rachel A, Subrahmanyam M, Boule P. Comparison of photocatalytic efficiencies of TiO2 in suspended and immobilised form for the photocatalytic degradation of nitrobenzenesulfonic acids. Appl Phys A-Mater, 2002, 37(4): 301–308Google Scholar
  37. 37.
    Seo J W, Chung H, Kim M Y, et al. Development of water-soluble single-crystalline TiO2 nanoparticles for photocatalytic cancer-cell treatment. Small, 2007, 3(5): 850–853CrossRefGoogle Scholar
  38. 38.
    Fujishima A, Hashimoto K, Watanabe T. TiO2 Photocatalysis: Fundamentals and Applications, BKC, Tokyo, 1999Google Scholar
  39. 39.
    Thiel J, Pakstis L, Buzby S, et al. Antibacterial properties of silver-doped titania. Small, 2007, 3(5): 799–803CrossRefGoogle Scholar
  40. 40.
    Sunada K, Watanabe T, Hashimoto K. Bactericidal activity of copper-deposited TiO2 thin film under weak UV light illumination. Environ Sci Technol, 2003, 37(20): 4785–4789CrossRefGoogle Scholar
  41. 41.
    Sunada K, Watanabe T, Hashimoto K. Studies on photokilling of bacteria on TiO2 thin film. J Photoch Photobio A, 2003, 156(1–3): 227–233CrossRefGoogle Scholar
  42. 42.
    Wang R, Hashimoto K, Fujishima A, et al. Photogeneration of highly amphiphilic TiO2 surfaces. Adv Mater, 1998, 10(2): 135–138CrossRefGoogle Scholar
  43. 43.
    Fujishima A, Zhang X T. Titanium dioxide photocatalysis: Present situation and future approaches. Cr Chim, 2006, 9(5–6): 750–760CrossRefGoogle Scholar
  44. 44.
    Bai C L. Ascent of nanoscience in China. Science, 2005, 309(5731): 61–63CrossRefGoogle Scholar
  45. 45.
    Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis. J Photoch Photobio C, 2000, 1(1): 1–21CrossRefGoogle Scholar
  46. 46.
    Paz Y, Luo Z, Rabenberg L, et al. Photooxidative self-cleaning transparent titanium dioxide films on glass. J Mater Res, 1995, 10: 2842–2848CrossRefGoogle Scholar
  47. 47.
    Hashimoto K, Irie H, Fujishima A. TiO2 photocatalysis: A historical overview and future prospects. Jpn J Appl Phys, 2005, 44(12): 8269–8285CrossRefGoogle Scholar
  48. 48.
    Zhang Y P, Yang R, Xu Q J, et al. Characteristics of photocatalytic oxidation of toluene, benzene, and their mixture. J Air Waste Manage, 2007, 57(1): 94–101Google Scholar
  49. 49.
    Ao C H, Lee S C, Mak C L, et al. Photodegradation of volatile organic compounds (VOCs) and NO for indoor air purification using TiO2: Promotion versus inhibition effect of NO. Appl Catal B, 2003, 42(2): 119–129CrossRefGoogle Scholar
  50. 50.
    Ao C H, Lee S C, Yu J Z, et al. Photodegradation of formaldehyde by photocatalyst TiO2: Effects on the presences of NO, SO2 and VOCs. Appl Catal B, 2004, 54(1): 41–50Google Scholar
  51. 51.
    Ao C H, Lee S C, Yu J C. Photocatalyst TiO2 supported on glass fiber for indoor air purification: effect of NO on the photodegradation of CO and NO2. J Photoch Photobio A, 2003, 156(1–3): 171–177CrossRefGoogle Scholar
  52. 52.
    Einaga H, Futamura S, Ibusuki T. Heterogeneous photocatalytic oxidation of benzene, toluene, cyclohexene and cyclohexane in humidified air: Comparison of decomposition behavior on photoirradiated TiO2 catalyst. Appl Catal B, 2002, 38(3): 215–225CrossRefGoogle Scholar
  53. 53.
    Kim S B, Hwang H T, Hong S C. Photocatalytic degradation of volatile organic compounds at the gas-solid interface of a TiO2 photocatalyst. Chemosphere, 2002, 48(4): 437–444CrossRefGoogle Scholar
  54. 54.
    Ameen M M, Raupp G B. Reversible catalyst deactivation in the photocatalytic oxidation of diluteo-xylene in air. J Catal, 1999, 184(1): 112–122CrossRefGoogle Scholar
  55. 55.
    Ollis D F, Pelizzetti E, Serpone N. Photocatalyzed destruction of water contaminants. Environ Sci Technol, 1991, 25(9): 1522–1529CrossRefGoogle Scholar
  56. 56.
    Sun R D, Nakajima A, Watanabe T, et al. Decomposition of gas-phase octamethyltrisiloxane on TiO2 thin film photocatalysts: catalytic activity, deactivation, and regeneration. J Photoch Photobio A, 2003, 154(2–3): 203–209CrossRefGoogle Scholar
  57. 57.
    Piera E, Ayllon J A, Domenech X, et al. TiO2 deactivation during gas-phase photocatalytic oxidation of ethanol. Catal Today, 2002, 76(2–4): 259–270CrossRefGoogle Scholar
  58. 58.
    Kozlov D V, Vorontsov A V, Smirniotis P G, et al. Gas-phase photocatalytic oxidation of diethyl sulfide over TiO2: Kinetic investigations and catalyst deactivation. Appl Catal B, 2003, 42(1): 77–87CrossRefGoogle Scholar
  59. 59.
    Wang W, Chiang L W, Ku Y. Decomposition of benzene in air streams by UV/TiO2 process. J Hazard Mater, 2003, 101(2): 133–146CrossRefGoogle Scholar
  60. 60.
    Wu Z B, Dong F, Zhao W R, et al. Visible light induced electron transfer process over nitrogen doped TiO2 nanocrystals prepared by oxidation of titanium nitride. J Hazard Mater, 2008, 157: 57–63CrossRefGoogle Scholar
  61. 61.
    Batzill M, Morales E H, Diebold U, et al. Surface studies of nitrogen implanted TiO2. Chem Phys, 2007, 339(1–3): 36–43CrossRefGoogle Scholar
  62. 62.
    Miyauchi, M. Visible light induced super-hydrophilicity on single crystalline TiO2 nanoparticles and WO3 layered thin films. J Mater Chem, 2008, 18(16): 1858–1864CrossRefGoogle Scholar
  63. 63.
    Page K, Palgrave R G, Parkin I P, et al. Titania and silver-titania composite films on glass-potent antimicrobial coatings. J Mater Chem, 2007, 17(1): 95–104CrossRefGoogle Scholar
  64. 64.
    Huijser A, Marek P L, Savenije T J, et al. Photosensitization of TiO2 and SnO2 by artificial self-assembling mimics of the natural chlorosomal bacteriochlorophylls. J Phys Chem C, 2007, 111(31): 11726–11733CrossRefGoogle Scholar
  65. 65.
    Dong F, Zhao W R, Wu Z B. Characterization and photocatalytic activities of C, N and S co-doped TiO2 with 1D nanostructure prepared by the nano-confinement effect. Nanotechnology, 2008, 19(36): 365607CrossRefGoogle Scholar
  66. 66.
    Kyrkou A, Kontos A I, Papavassiliou G, et al. Highly photoactive monodidisperse titania hollow nanospheres. J Adv Oxid Tech, 2008, 11(2): 402–410Google Scholar
  67. 67.
    Huang J Q, Huang Z, Guo W, et al. Facile synthesis of titanate nanoflowers by a hydrothermal route. Cryst Growth Des, 2008, 8(7): 2444–2446CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.Department of Environmental EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations