Advertisement

Chinese Science Bulletin

, Volume 54, Issue 1, pp 20–37 | Cite as

The Siberian Traps and the End-Permian mass extinction: a critical review

  • Andy SaundersEmail author
  • Marc Reichow
Review/Geology

Abstract

The association between the Siberian Traps, the largest continental flood basalt province, and the largest-known mass extinction event at the end of the Permian period, has been strengthened by recently- published high-precision 40Ar/39Ar dates from widespread localities across the Siberian province[1]. We argue that the impact of the volcanism was amplified by the prevailing late Permian environmental conditions—in particular, the hothouse climate, with sluggish oceanic circulation, that was leading to widespread oceanic anoxia. Volcanism released large masses of sulphate aerosols and carbon dioxide, the former triggering short-duration volcanic winters, the latter leading to long-term warming. Whilst the mass of CO2 released from individual eruptions was small compared with the total mass of carbon in the atmosphere-ocean system, the long ‘mean lifetime’ of atmospheric CO2, compared with the eruption flux and duration, meant that significant accumulation could occur over periods of 105 years. Compromise of the carbon sequestration systems (by curtailment of photosynthesis, destruction of biomass, and warming and acidification of the oceans) probably led to rapid atmospheric CO2 build-up, warming, and shallow-water anoxia, leading ultimately to mass extinction.

Keywords

continental flood basalts oceanic anoxia radiometric dating CO2 SO2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reichow M K, Pringle M S, Al’Mukhamedov A I, et al. The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end-Permian environmental crisis. Earth Planet Sci Lett, doi: 10.1016/j.epsl.2008.09.030Google Scholar
  2. 2.
    Raup D M, Sepkoski J J. Mass extinctions in the marine fossil record. Science, 1982, 215: 1501–1503PubMedCrossRefGoogle Scholar
  3. 3.
    Keller G, Adatte T, Berner Z, et al. Chicxulub impact predates K-T boundary: New evidence from Brazos, Texas. Earth Planet Sci Lett, 2007, 255: 339–356CrossRefGoogle Scholar
  4. 4.
    Vogt P R. Evidence for global synchronism in mantle plume convection, and possible significance for geology. Nature, 1972, 240: 338–342CrossRefGoogle Scholar
  5. 5.
    McLean D M. Deccan traps mantle degassing in the terminal Cretaceous marine extinctions. Cret Res, 1985, 6: 235–259CrossRefGoogle Scholar
  6. 6.
    Rampino M R, Stothers R B. Flood basalt volcanism during the past 250 million years. Science, 1988, 241: 663–668PubMedCrossRefGoogle Scholar
  7. 7.
    Stothers R B. Flood basalts and extinction events. Geophys Res Lett, 1993, 20: 1399–1402CrossRefGoogle Scholar
  8. 8.
    Courtillot V. Mass extinctions in the last 300 million years: One impact and seven flood basalts? Israeli J Earth Sci, 1994, 43: 255–266Google Scholar
  9. 9.
    Wignall P B. Large igneous provinces and mass extinctions. Earth-Sci Rev, 2001, 53: 1–33CrossRefGoogle Scholar
  10. 10.
    Courtillot V E, Renne P R. On the ages of flood basalt events. Comptes Rend Geosc, 2003, 335: 113–140CrossRefGoogle Scholar
  11. 11.
    White R V, Saunders A D. Volcanism, impact and mass extinctions: Incredible or credible coincidences. Lithos, 2005, 79: 299–316CrossRefGoogle Scholar
  12. 12.
    Hallam A, Wignall P B. Mass Extinctions and Their Aftermath. New York: Oxford University Press, 1997Google Scholar
  13. 13.
    Sahney S, Benton M J. Recovery from the most profound mass extinction of all time. Proc Roy Soc Lond Ser B, 2008, 275: 759–765CrossRefGoogle Scholar
  14. 14.
    Renne P R, Basu A R. Rapid eruption of the Siberian Traps flood basalts at the Permo-Triassic boundary. Science, 1991, 253: 176–179PubMedCrossRefGoogle Scholar
  15. 15.
    Campbell I A, Czamanske G K, Fedorenko V A, et al. Synchronism of the Siberian Traps and the Permian-Triassic boundary. Science, 1992, 258: 1760–1763PubMedCrossRefGoogle Scholar
  16. 16.
    Renne P R, Zichao Z, Richards M A, et al. Synchrony and causal relations between Permian-Triassic boundary crises and Siberian flood volcanism. Science, 1995, 269: 1413–1416PubMedCrossRefGoogle Scholar
  17. 17.
    Fedorenko V A, Lightfoot P C, Naldrett A J, et al. Petrogenesis of the Siberian flood-basalt sequence at Noril’sk, North Central Siberia. Int Geol Rev, 1996, 38: 99–135CrossRefGoogle Scholar
  18. 18.
    Vyssotski A V, Vyssotski V N, Nezhdanov A A. Evolution of the West Siberian Basin. Mar Petrol Geol, 2006, 23: 93–126CrossRefGoogle Scholar
  19. 19.
    Saunders A D, England R W, Reichow M K, et al. A mantle plume origin for the Siberian Traps: Uplift and extension in the West Siberian Basin, Russia. Lithos, 2005, 79: 407–424CrossRefGoogle Scholar
  20. 20.
    Westphal M, Gurevitch E L, Samsonov B V, et al. Magnetostratigraphy of the lower Triassic volcanics from deep drill SG6 in western Siberia: Evidence for long-lasting Permo-Triassic volcanic activity. Geophys J Int, 1998, 134: 254–266CrossRefGoogle Scholar
  21. 21.
    Jay A E, Widdowson M. Stratigraphy, structure and volcanology of the SE Deccan continental flood basalt province: Implications for eruptive extent and volumes. J Geol Soc Lond, 2008, 165: 177–188CrossRefGoogle Scholar
  22. 22.
    Dalrymple G B, Czamanske G K, Fedorenko V A, et al. A reconnaissance 40Ar/39Ar geochronologic study of ore-bearing and related rocks, Siberian Russia. Geochim Cosmochim Acta, 1995, 59: 2071–2083CrossRefGoogle Scholar
  23. 23.
    Venkatesan T R, Kumar A, Gopalan K, et al. 40Ar-39Ar age of Siberian basaltic magmatism. Chem Geol, 1997, 138: 303–310CrossRefGoogle Scholar
  24. 24.
    Basu A R, Poreda R J, Renne P R, et al. High-3He plume origin and temporal-spatial evolution of the Siberian flood basalts. Science, 1995, 269: 822–825PubMedCrossRefGoogle Scholar
  25. 25.
    Reichow M K, Saunders A D, White R V, et al. New 40Ar-39Ar data on basalts from the West Siberian Basin: Extent of the Siberian flood basalt province doubled. Science, 2002, 296: 1846–1849PubMedCrossRefGoogle Scholar
  26. 26.
    Kamo S L, Czamanske G K, Amelin Y, et al. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma. Earth Planet Sci Lett, 2003, 214: 75–91CrossRefGoogle Scholar
  27. 27.
    Chenet A-L, Quidelleur X, Fluteau F, et al. 40K-40Ar dating of the Main Deccan large igneous province: Further evidence of KTB age and short duration. Earth Planet Sci Lett, 2007, 263: 1–15CrossRefGoogle Scholar
  28. 28.
    Chenet A-L, Fluteau F, Courtillot V, et al. Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: Results from a 1200-m-thick section in the Mahabaleshwar escarpment. J Geophys Res, 2008, 113(B4), doi: 10.1029/2006JB004635Google Scholar
  29. 29.
    Larsen R B, Tegner C. Pressure conditions for the solidification of the Skaergaard intrusion: Eruption of East Greenland flood basalts in less than 300,000 years. Lithos, 2006, 92: 181–197CrossRefGoogle Scholar
  30. 30.
    Yin H, Kexin Z, Jinnan T, et al. The global stratotype section and point of the Permo-Triassic boundary. Episodes, 2001, 24: 102–114Google Scholar
  31. 31.
    Yin H, Yang F, Zhang K, et al. A proposal to the biostratigraphic criterion of the Permian/Triassic boundary. Mem Soci Geol Ital, 1986, 34: 329–344Google Scholar
  32. 32.
    Jin Y G, Wang Y, Wang W, et al. Pattern of marine mass extinction near the Permian-Triassic boundary in south China. Science, 2000, 289: 432–436PubMedCrossRefGoogle Scholar
  33. 33.
    Bowring S A, Erwin D H, Jin Y G, et al. Zircon geochronology and tempo of the end-Permian mass extinction. Science, 1998, 280: 1039–1045PubMedCrossRefGoogle Scholar
  34. 34.
    Mundil R, Ludwig K R, Metcalfe I, et al. Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons. Science, 2004, 305: 1760–1762PubMedCrossRefGoogle Scholar
  35. 35.
    Min K, Mundil R, Renne P R, et al. A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.3-Ga rhyolite. Geochim Cosmochim Acta, 2000, 64: 73–98CrossRefGoogle Scholar
  36. 36.
    Montanez I P, Tabor N J, Niemeier D, et al. CO2-forced climate and vegetation instability during late Paleozoic deglaciation. Science, 2007, 315: 87–91PubMedCrossRefGoogle Scholar
  37. 37.
    Kidder D L, Worsley T R. Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery. Palaeogeogr Palaeoclimatol Palaeoecol, 2004, 203: 207–237CrossRefGoogle Scholar
  38. 38.
    Kiehl J T, Shields C A. Climate simulation of the latest Permian: Implications for mass extinction. Geology, 2005, 33: 757–760CrossRefGoogle Scholar
  39. 39.
    Berner R A. GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2. Geochim Cosmochim Acta, 2006, 70: 5653–5664CrossRefGoogle Scholar
  40. 40.
    Hyde W T, Grossman E L, Crowley T J, et al. Siberian glaciation as a constraint on Permian-Carboniferous CO2 levels. Geology, 2006, 34: 421–424CrossRefGoogle Scholar
  41. 41.
    Royer D L. CO2-forced climate thresholds during the Phanerozoic. Geochim Cosmochim Acta, 2006, 70: 5665–5675CrossRefGoogle Scholar
  42. 42.
    Isozaki Y. Permo-Triassic boundary superanoxia and stratified superocean: Records from lost deep sea. Science, 1997, 276: 235–238PubMedCrossRefGoogle Scholar
  43. 43.
    Erwin D H. The Permo-Triassic extinction. Nature, 1994, 367: 231–236CrossRefGoogle Scholar
  44. 44.
    Erwin D H. Impact at the Permo-Triassic boundary: A critical evaluation. Astrobiology, 2003, 3: 67–74PubMedCrossRefGoogle Scholar
  45. 45.
    Erwin D H. Extinction: How Life on Earth Nearly Ended 250 Million Years Ago. Princeton and Oxford: Princeton University Press, 2005. 296Google Scholar
  46. 46.
    White R V. Earth’s biggest ‘whodunnit’: Unravelling the clues in the case of the end-Permian mass extinction. Phil Trans Roy Soc Lond Ser A, 2002, 360: 2963–2985CrossRefGoogle Scholar
  47. 47.
    Benton M J. When Life Nearly Died. The Greatest Mass Extinction of all Time. London: Thames and Hudson, 2003. 336Google Scholar
  48. 48.
    Benton M J, Twitchett R J. How to kill (almost) all life: The end-Permian extinction event. Trends Ecol Evol, 2003, 18: 358–365CrossRefGoogle Scholar
  49. 49.
    Twitchett R J. Climate change across the Permo-Triassic boundary. In: Williams M, Haywood A M, Gregory F J, et al, eds. Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer models and Biological Proxies, The Micropalaeontological Society, Special Publications. London: The Geological Society, 2007. 191–200Google Scholar
  50. 50.
    Wignall P B. The End-Permian mass extinction— How bad did it get? Geobiology, 2007, 5: 303–309CrossRefGoogle Scholar
  51. 51.
    Looy C V, Brugman W A, Dilcher D L, et al. The delayed resurgence of equatorial forests after the Permian-Triassic ecologic crisis. Proc Nat Acad Sci USA 1999, 96: 13857–13862PubMedCrossRefGoogle Scholar
  52. 52.
    Taylor E L, Taylor T N, Cuneo N R. The present is not the key to the past—A polar forest from the Permian of Antarctica. Science, 1992, 257: 1675–1677PubMedCrossRefGoogle Scholar
  53. 53.
    Wignall P B, Twitchett R J. Oceanic anoxia and the end Permian mass extinction. Science, 1996, 272: 1155–1158PubMedCrossRefGoogle Scholar
  54. 54.
    Wignall P B, Newton R. Contrasting deep-water records from the Upper Permian and Lower Triassic of South Tibet and British Columbia: Evidence for a diachronous mass extinction. Palaios, 2003, 18: 153–167CrossRefGoogle Scholar
  55. 55.
    Baud A, Magaritz M, Holser W T. Permian-Triassic of the Tethys: Carbon isotope studies. Geol Rundsch, 1989, 78: 649–677CrossRefGoogle Scholar
  56. 56.
    Holser W T, Magaritz M. Cretaceous/Tertiary and Permian/Triassic boundary events compared. Geochim Cosmochim Acta, 1992, 56: 3297–3309CrossRefGoogle Scholar
  57. 57.
    Musashi M, Isozaki Y, Koike T, et al. Stable carbon isotope signature in mid-Panthalassa shallow-water carbonates across the Permo-Triassic boundary: Evidence for 13C-depleted superocean. Earth Planet Sci Lett, 2001, 191: 9–20CrossRefGoogle Scholar
  58. 58.
    Cao C Q, Wang W, Jin Y G. Carbon isotope excursions across the Permian-Triassic boundary in the Meishan section, Zhejiang Province, China. Chin Sci Bull, 2002, 47: 1125–1129CrossRefGoogle Scholar
  59. 59.
    Kaiho K, Chen Z Q, Ohashi T, et al. A negative carbon isotope anomaly associated with the earliest Lopingian (Late Permian) mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol, 2005, 223: 172–180CrossRefGoogle Scholar
  60. 60.
    Korte C, Jasper T, Kozur H W, et al. δ18O and δ13C of Permian brachiopods: A record of seawater evolution and continental glaciation. Palaeogeogr Palaeoclimatol Palaeoecol, 2005, 224: 333–351CrossRefGoogle Scholar
  61. 61.
    Riccardi A, Kump L R, Arthur M A, et al. Carbon isotopic evidence for chemocline upward excursions during the end-Permian event. Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 248: 73–81CrossRefGoogle Scholar
  62. 62.
    Xie S C, Pancost R D, Huang J H, et al. Changes in the global carbon cycle occurred as two episodes during the Permian-Triassic crisis. Geology, 2007, 35: 1083–1086CrossRefGoogle Scholar
  63. 63.
    Kaiho K, Chen Z Q, Kawahata H, et al. Close-up of the end-Permian mass extinction horizon recorded in the Meishan section, South China: Sedimentary, elemental, and biotic characterization and a negative shift of sulfate sulfur isotope ratio. Palaeogeogr Palaeoclimatol Palaeoecol, 2006, 239: 396–405CrossRefGoogle Scholar
  64. 64.
    Kaiho K, Kajiwara Y, Chen Z Q, et al. A sulfur isotope event at the end of the Permian. Chem Geol, 2006, 235: 33–47CrossRefGoogle Scholar
  65. 65.
    Kaiho K, Kajiwara Y, Nakano T, et al. End-Permian catastrophe by bolide impact: Evidence of a gigantic release of sulfur from the mantle. Geology, 2001, 29: 815–818CrossRefGoogle Scholar
  66. 66.
    Newton R J, Pevitt E L, Wignall P B, et al. Large shifts in the isotopic composition of seawater sulphate across the Permo-Triassic boundary in northern Italy. Earth Planet Sci Lett, 2004, 218: 331–345CrossRefGoogle Scholar
  67. 67.
    Grice K, Cao C Q, Love G D, et al. Photic zone euxinia during the Permian-Triassic superanoxic event. Science, 2005, 307: 706–709PubMedCrossRefGoogle Scholar
  68. 68.
    Riccardi A L, Arthur M A, Kump L R. Sulfur isotopic evidence for chemocline upward excursions during the end-Permian mass extinction. Geochim Cosmochim Acta, 2006, 70: 5740–5752CrossRefGoogle Scholar
  69. 69.
    Kump L R, Pavlov A, Arthur M A. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology, 2005, 33: 397–400CrossRefGoogle Scholar
  70. 70.
    Thordarson T, Self S. Atmospheric and environmental effects of the 1783–1784 Laki eruption: A review and reassessment. J Geophys Res, 2003, 107, doi: 10.1029/2001JD002042Google Scholar
  71. 71.
    Self S, Widdowson M, Thordarson T, et al. Volatile fluxes during flood basalt eruptions and potential effects on the global environment: A Deccan perspective. Earth Planet Sci Lett, 2006, 248: 517–531CrossRefGoogle Scholar
  72. 72.
    Self S, Blake S, Sharma K, et al. Sulfur and chlorine in Late Cretaceous Deccan magmas and eruptive gas release. Science, 2008, 319: 1654–1657PubMedCrossRefGoogle Scholar
  73. 73.
    Thordarson T, Self S. The Roza Member, Columbia River Basalt Group: A gigantic pahoehoe lava flow field formed by endogenous processes. J Geophys Res, 1998, 103: 27411–27445CrossRefGoogle Scholar
  74. 74.
    McCartney K, Huffman A R, Tredoux M. A paradigm for endogenous causation of mass extinctions. In: Sharpton V L, Ward P D, eds. Global Catastrophes in Earth History. Special Paper, Geol Soc Amer, 1990, 247: 125–138Google Scholar
  75. 75.
    Trenberth K E, Christy J R, Olson J G. Global atmospheric mass, surface pressure, and water vapor variations. J Geophys Res, 1988, 93(D9): 10925CrossRefGoogle Scholar
  76. 76.
    Archer D. Fate of fossil fuel CO2 in geologic time. J Geophys Res, 2005, 110(C9), doi: 10.1029/2004JC002625Google Scholar
  77. 77.
    Lenton T M, Britton C. Enhanced carbonate and silicate weathering accelerates recovery from fossil fuel CO2 perturbations. Glob Biogeochem Cycle, 2006, 20, doi: 10.1029/2005GB002678Google Scholar
  78. 78.
    Svensen H, Planke S, Malthe-Sørenssen, et al. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature, 2004, 429: 542–545PubMedCrossRefGoogle Scholar
  79. 79.
    Retallack G J, Jahren A H. Methane release from igneous intrusion of coal during Late Permian extinction events. J Geol, 2008, 116: 1–20CrossRefGoogle Scholar
  80. 80.
    Svensen H, Planke S, Chevallier L, et al. Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming. Earth Planet Sci Lett, 2007, 256: 554–566CrossRefGoogle Scholar
  81. 81.
    McCormick M P, Thomason L W, Trepte C R. Atmospheric effects of the Mt Pinatubo eruption. Nature, 1995, 373: 399–404CrossRefGoogle Scholar
  82. 82.
    Thordarson T, Self S. Sulfur, chlorine and fluorine degassing and atmospheric loading by the Roza eruption, Columbia River Basalt Group, Washington, USA. J Volcanol Geotherm Res, 1996, 74: 49–73CrossRefGoogle Scholar
  83. 83.
    Li C, Ripley E M, Naldrett A J, et al. Magmatic anhydrite assemblages in the plumbing system of the Siberian Traps. Geology, doi: 10.1130/G25355A.1Google Scholar
  84. 84.
    Bluth G J S, Doiron S D, Schnetzler C C, et al. Global tracking of the SO2 clouds from the June, 1991 Mount Pinatubo eruptions. Geophys Res Lett, 1992, 19: 151–154CrossRefGoogle Scholar
  85. 85.
    Gu L, Baldocchi D D, Wofsy S C, et al. Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis. Science, 2003, 299: 2035–2038PubMedCrossRefGoogle Scholar
  86. 86.
    Turco R P, Toon O B, Ackerman T P, et al. The climatic effects of nuclear war. Sci Amer, 1984, 251: 23–33CrossRefGoogle Scholar
  87. 87.
    Robock A, Oman L, Stenchikov G L, et al. Climatic consequences of regional nuclear conflicts. Atmos Chem Phys Discussions, 2006, 6: 11817–11843Google Scholar
  88. 88.
    Toon O B, Turco R P, Robock A, et al. Atmospheric effects and societal consequences of regional scale nuclear conflicts and acts of individual nuclear terrorism. Atmos Chem Phys Discussions, 2006, 6: 11745–11816Google Scholar
  89. 89.
    Highwood E J, Stevenson D S. Atmospheric impact of the 1783–1784 Laki eruption: Part II Climate effect of sulphate aerosol. Atmos Chem Phys, 2003, 3: 1177–1189Google Scholar
  90. 90.
    Chenet A L, Fluteau F, Courtillot V. Modelling massive sulphate aerosol pollution, following the large 1783 Laki basaltic eruption. Earth Planet Sci Lett, 2005, 236: 721–731CrossRefGoogle Scholar
  91. 91.
    Grattan J. Pollution and paradigms: Lessons from Icelandic volcanism for continental flood basalt studies. Lithos, 2005, 79: 343–353CrossRefGoogle Scholar
  92. 92.
    Rampino M R, Self S, Stothers R B. Volcanic winters. Annu Rev Earth Planet Sci, 1988, 16: 73–99CrossRefGoogle Scholar
  93. 93.
    Beerling D J, Harfoot M, Lomax B, et al. The stability of the stratospheric ozone layer during the end-Permian eruption of the Siberian Traps. Phil Trans Roy Soc Lond Ser A, 2007, 365: 1843–1866CrossRefGoogle Scholar
  94. 94.
    Visscher H, Looy C V, Collinson M E, et al. Environmental mutagenesis during the end-Permian ecological crisis. Proc Nat Acad Sci USA, 2004, 101: 12952–12956PubMedCrossRefGoogle Scholar
  95. 95.
    Visscher H, Brinkhuis H, Dilcher D L, et al. The terminal Paleozoic fungal event: Evidence of terrestrial ecosystem destabilization and collapse. Proc Nat Acad Sci USA, 1996, 93: 2155–2158PubMedCrossRefGoogle Scholar
  96. 96.
    Cohen A S, Coe A L, Kemp D B. The Late Palaeocene-Early Eocene and Toarcian (Early Jurassic) carbon isotope excursions: a comparison of their timescales, associated environmental changes, causes and consequences. J Geol Soc Lond, 2007, 164: 1093–1108CrossRefGoogle Scholar
  97. 97.
    Berner R A. Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling. Proc Nat Acad Sci USA, 2002, 99: 4172–4177PubMedCrossRefGoogle Scholar
  98. 98.
    Krull A S, Retallack G J. δ13C depth profiles from paleosols across the Permian-Triassic boundary: Evidence for methane release. Geol Soc Am Bull, 2000, 112: 1459–1472Google Scholar
  99. 99.
    Dickens G R, O’Neil J R, Rea D K, et al. Dissociation of oceanic methane hydrate as a cause of the carbon-isotope excursion at the end of the Paleocene. Paleoceanography, 1995, 10: 965–971CrossRefGoogle Scholar
  100. 100.
    Hesselbo S P, Grocke D R, Jenkyns H C, et al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature, 2000, 406: 392–395PubMedCrossRefGoogle Scholar
  101. 101.
    Kvenvolden K A. Methane hydrate in the global organic carbon cycle. Terra Nova, 2002, 14: 302–306CrossRefGoogle Scholar
  102. 102.
    Milkov A V. Global estimates of hydrate-bound gas in marine sediments: How much is really out there? Earth Sci Rev, 2004, 66: 183–197CrossRefGoogle Scholar
  103. 103.
    McElwain J C, Wade-Murphy J, Hesselbo S P. Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals. Nature, 2005, 435: 479–482PubMedCrossRefGoogle Scholar
  104. 104.
    Retallack G J. Comment—Contrasting deepwater records from the Upper Permian and Lower Triassic of South Tibet and British Columbia: Evidence for a diachronous mass extinction (Wignall and Newton, 2003). Palaios, 2004, 19: 101–102CrossRefGoogle Scholar
  105. 105.
    Twitchett R J, Looy C V, Morante R, et al. Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis. Geology, 2001, 29: 351–354CrossRefGoogle Scholar
  106. 106.
    Sluijs A, Brinkhuis H, Schouten S, et al. Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary. Nature, 2007, 450: 1218–1221PubMedCrossRefGoogle Scholar
  107. 107.
    Payne J L, Kump L R. Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations. Earth Planet Sci Lett, 2007, 256: 264–277CrossRefGoogle Scholar
  108. 108.
    Stern D I. Global Sulfur Emissions in the 1990’s. Renesselaer Polytechnic Institution Report 0311: Troy, New York, 2003, 32Google Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.Department of Geological SciencesUniversity of LeicesterLeicesterUnited Kingdom

Personalised recommendations