Chinese Science Bulletin

, 53:3741 | Cite as

High pulse energy femtosecond large-mode-area photonic crystal fiber laser

  • YouJian Song
  • MingLie HuEmail author
  • Chi Zhang
  • Lu Chai
  • ChingYue Wang
Articles/Photoelectron & Laser Technology


A high pulse energy femtosecond fiber laser based on a large-mode-area photonic crystal fiber is demonstrated. A segment of Yb-doped single-polarization large-mode-area photonic crystal fiber with extremely low nonlinearity is explored as gain media of this fiber laser, resulting in intrinsically environmentally stability. The fiber laser is based on a linear cavity with dispersion compensation free configuration, and the stable mode-locking is obtained by a semiconductor saturable absorber mirror (SESAM). The fiber laser directly generates 2.5 W of average power at a repetition rate of 51.4 MHz, corresponding to a single pulse energy of 50 nJ. The output pulse duration is 4.2 ps, which is dechirped to 410 fs after extracavity dispersion compensation. The nonlinear absorption of SESAM determines the pulse shaping at low output power, while the mode-locking mechanism is under the balance between spectrum broadening from self-phase-modulation and gain filtering at the high output power.


femtosecond photonic crystal fiber large-mode-area fiber fiber laser 


  1. 1.
    Limpert J, Schreiber T, Nolte S, et al. High-power air-clad large-mode-area photonic crystal fiber laser. Opt Express, 2003, 11 (7): 818–823CrossRefPubMedGoogle Scholar
  2. 2.
    Ortac B, Schmidt O, Schreiber T, et al. High-energy femtosecond Yb-doped dispersion compensation free fiber laser. Opt Express, 2007, 15(17): 10725–10732CrossRefPubMedGoogle Scholar
  3. 3.
    Lecaplain C, Chedot C, Hideur A, et al. High-power all-normal-dispersion femtosecond pulse generation from a Yb-doped large-mode-area microstructure fiber laser. Opt Lett, 2007, 32(18): 2738–2740PubMedCrossRefGoogle Scholar
  4. 4.
    Ortac B, Limpert J, Tunnermann A. High-energy Femtosecond Yb-doped fiber laser operating in the anomalous dispersion regime. Opt Lett, 2007, 32(15): 2149–2151PubMedCrossRefGoogle Scholar
  5. 5.
    Tamura K, Nelson L E, Haus H A, et al. Soliton versus nonsoliton operation of fiber ring lasers. Appl Phys Lett, 1994, 64(2): 149–151CrossRefGoogle Scholar
  6. 6.
    Tamura K, Ippen E P, Haus H A, et al. 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser. Opt Lett, 1993, 18(13): 1080–1082CrossRefPubMedGoogle Scholar
  7. 7.
    Ilday F Ö, Buckley J R, Clark W G, et al. Self-similar evolution of parabolic pulses in a laser. Phys Rev Lett, 2004, 92(21): 213902PubMedCrossRefGoogle Scholar
  8. 8.
    Chong A, Buckley J, Renninger W, et al. All-normal-dispersion femtosecond fiber laser. Opt Express, 2006, 14(21): 10095–10100CrossRefPubMedGoogle Scholar
  9. 9.
    Herda R, Okhotnikov O G. Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror. IEEE J Quantum Electron, 2004, 40(7): 893–899CrossRefGoogle Scholar
  10. 10.
    Schreiber T, Röser F, Schmidt O, et al. Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity. Opt Express, 2005, 13(19): 7621–7630CrossRefPubMedGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  • YouJian Song
    • 1
  • MingLie Hu
    • 1
    Email author
  • Chi Zhang
    • 1
  • Lu Chai
    • 1
  • ChingYue Wang
    • 1
  1. 1.Ultrafast Laser Laboratory, College of Precision Instruments and Opto-electronics Engineering, Key Laboratory of Opto-electronic Information Science and Technology of Ministry of EducationTianjin UniversityTianjinChina

Personalised recommendations