Chinese Science Bulletin

, Volume 53, Issue 20, pp 3164–3168 | Cite as

The influence of the metal net charge of non-metallocene early transition metal catalyst on the ethylene polymerization activity

Articles/Physical Chemistry

Abstract

The net charges on central metals of a serial non-metallocene early transition metal catalysts (FI catalyst) with similar steric hindrance were caculated with MM-QEq (molecular mechmism-charge equilibration) method and associated with ethylene polymerization activities of these FI catalyts. It was found that the activity increased with the net charge on metal if ignoring the influence of the steric hindrance. In other words, introduction of strong and/or more electron-withdrawing groups onto the ligand of FI catalyst would enhance the activity of the catalyst. This conculsion gave a direction to designing new FI catalyst with higher activity.

Keywords

molecular mechanism charge equilibration FI catalyst activity net charge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mohring P C, Coville N J. Quantification of the influence of steric and electronic parameters on the ethylene polymerisation activity of (CpR)2ZrCl2/ethylaluminoxane Ziegler-Natta catalysts. J Mol Catal, 1992, 77(1): 41–50CrossRefGoogle Scholar
  2. 2.
    Guo D W, Yang X Z, Liu T Q, et al. Study on the activity of constrained geometry metallocenes. Macromol Theo Simul, 2001, 10: 75–78CrossRefGoogle Scholar
  3. 3.
    Guo D W, Yang X Z, Yang L, et al. Molecular modeling on the prediction of silolene-bridged indenyl metallocene catalysts for isotactic polypropylene. J Polymr Scie A: Polym Chem, 2000, 38: 2232–2238CrossRefGoogle Scholar
  4. 4.
    Rappe A K, Goddard W A. Charge equilibration for Molecular-Dynamics Simulations. J Physl Chem, 1991, 95(8): 3358–3363CrossRefGoogle Scholar
  5. 5.
    Zhang T Z, Sun W H, Li T, et al. Influence of electronic effect on catalytic activity of bis(imino)pyridyl Fe(II) and bis(imino)pyrimidyl Fe(II) complexes. J Mor Catal A-Chem, 2004, 218(2): 119–124CrossRefGoogle Scholar
  6. 6.
    Zhang T Z, Guo D W, Jie S Y, et al. Influence of electronic effect on catalytic activity of salicylaldiminato nickel(II) complexes. J Polymr Scie A: Polym Chem, 2004, 42(19): 4765–4774CrossRefGoogle Scholar
  7. 7.
    Makio H, Kashiwa N, Fujita T. FI catalysts: A new family of high performance catalysts for olefin polymerization. Adv Syn Catal, 2002, 344(5): 477–493CrossRefGoogle Scholar
  8. 8.
    Matsui S, Fujita T. FI Catalysts: Super active new ethylene polymerization catalysts. Catal Today, 2001, 66(1): 63–73CrossRefGoogle Scholar
  9. 9.
    Matsui S, Mitani M, Saito J, et al. Post-metallocenes: Catalytic perfomance of new bis(salicylaldiminato) zirconium complexes for ethylene polymerization. Chem Lett, 2000, 554–555Google Scholar
  10. 10.
    Matsui S, Tohi Y, Mitani M, et al. New bis(salicylaldiminato) titanium complexes for ethylene polymerization. Chem Lett, 1999: 1065–1066Google Scholar
  11. 11.
    Mitani M, Mohri J, Yoshida Y, et al. Living polymerization of ethylene catalyzed by titanium complexes having fluorine-containing phenoxy-imine chelate ligands. J Am Chem Soc, 2002, 124: 3327–3336PubMedCrossRefGoogle Scholar
  12. 12.
    Tian J, Hustad P D, Coates G W. A new catalyst for highly syndio-specific living olefin polymerization: Homopolymers and block copolymers from ethylene and propylene. J Am Chem Soc, 2001, 123: 5134–5135PubMedCrossRefGoogle Scholar
  13. 13.
    Yoshida Y, Matsui S, Fujita T. Bis(pyrrolide-imine) Ti complexes with MAO: A new family of high performance catalysts for olefin polymerization. J Organomet Chem, 2005, 690: 4382–4397CrossRefGoogle Scholar
  14. 14.
    Zhang X F, Chen S T, Li H Y, et al. Highly active copolymerization of ethylene with 10-undecen-1-ol using phenoxy-based zirconium/methylaluminoxane catalysts. J Polymr Scie A: Polym Chem, 2005, 43: 5944–5952CrossRefGoogle Scholar
  15. 15.
    Zhang X F, Chen S T, Li H Y, et al. Copolymerizations of ethylene and polar comonomers with bis(phenoxyketimine) group IV complexes: Effects of the central metal properties. J Polymr Scie A: Polym Chem, 2007, 45: 59–68CrossRefGoogle Scholar
  16. 16.
    Rappe A K, Casewit C J, Colwell K S, et al. Uff, a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations. J Am Chem Soc, 1992, 114: 10024–10035CrossRefGoogle Scholar
  17. 17.
    Matsui S, Mitani M, Saito J, et al. A family of zirconium complexes having two phenoxy-imine chelate ligands for olefin polymerization. J Am Chem Soc, 2001, 123: 6847–6856CrossRefGoogle Scholar
  18. 18.
    Chen S T, Zhang X F, Ma H W, et al. A series of new zirconium complexes bearing bis(phenoxyketimine) ligands: Synthesis, characterization and ethylene polymerization. J Organomet Chem, 2005, 690: 4184–4191CrossRefGoogle Scholar
  19. 19.
    Terao H, Ishii S I, Saito J, et al. Phenoxycycloalkylimine ligated zirconium complexes for ethylene polymerization: Formation of vinyl-terminated low molecular weight polyethylenes with high efficiency. Macromolecules, 2006, 39: 8584–8593CrossRefGoogle Scholar
  20. 20.
    Bando H, Nakayama Y, Sonobe Y, et al. Bis(phenoxy-imine) Zr complexes/Et3Al/heteropoly compound catalyst systems for ethylene polymerization. Macromol Rap Commun, 2003, 24: 732–736CrossRefGoogle Scholar
  21. 21.
    Furayama R, Saito J, Ishii S, et al. Ethylene and propylene polymerization behavior of a series of bis(phenoxy-imine)titanium complexes. J Mor Catal A-Chem, 2003, 200: 31–42CrossRefGoogle Scholar
  22. 22.
    Parssinen A, Luhtanen T, Klinga M, et al. Bis(salicylaldiminato) titanium complexes containing bulky imine substituents: Synthesis, characterization and ethylene polymerization studies. Eur J Inorg Chem, 2005: 2100–2109Google Scholar
  23. 23.
    Sun J Q, Cheng Z Z, Nie Y J, et al. Novel titanium complexes bearing two chelating phenoxy-imine ligands and their catalytic performance for ethylene polymerization. App Organometal Chem, 2007, 21: 268–274CrossRefGoogle Scholar
  24. 24.
    Parssinen A, Luhtanen T, Klinga M, et al. Alkylphenyl-substituted bis(salicylaldiminato) titanium catalysts in ethene polymerization. Organometallics, 2007, 26: 3690–3698CrossRefGoogle Scholar
  25. 25.
    Ishii S, Saito J, Mitani M, et al. Highly active ethylene polymerization catalysts based on titanium complexes having two phenoxy-imine chelate ligands. J Mor Catal A-Chem, 2002, 179: 11–16CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.Department of ChemistryWuhan UniversityWuhanChina
  2. 2.Joint Laboratory of Polymer Science and Materials, and Key Laboratory of Engineering Plastics, Institute of ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations