Chinese Science Bulletin

, 53:2265 | Cite as

Applications of electrospun nanofibers

Review Materials Science

Abstract

Polymeric nanofiber non-woven materials produced by electrospinning have extremely high surface-to-mass (or volume) ratio and a porous structure with excellent pore-interconnectivity. These characteristics plus the functionalities and surface chemistry of the polymer itself impart the nanofibers with desirable properties for a range of advanced applications. This review summarizes the recent progress in electrospun nanofibers, with an emphasis on their applications.

Keywords

electrospun nanofibers electrospinning one-dimension materials applications review 

References

  1. 1.
    Li H, Ke Y, Hu Y. Polymer nanofibers prepared by template melt extrusion. J Appl Polym Sci, 2006, 99(3): 1018–1023CrossRefGoogle Scholar
  2. 2.
    Ikegame M, Tajima K, Aida T. Template synthesis of polypyrrole nanofibers insulated within one-dimensional silicate channels: Hexagonal versus lamellar for recombination of polarons into bipolarons. Angew Chem Int Edit, 2003, 42(19): 2154–2157CrossRefGoogle Scholar
  3. 3.
    Yang Z, Xu B. Supramolecular hydrogels based on biofunctional nanofibers of self-assembled small molecules. J Mater Chem, 2007, 17(23): 2385–2393CrossRefGoogle Scholar
  4. 4.
    Feng X, Yang G, Xu Q, et al. Self-assembly of polyaniline/Au composites: From nanotubes to nanofibers. Macromol Rapid Comm, 2006, 27(1): 31–36CrossRefGoogle Scholar
  5. 5.
    Hong Y, Legge R L, Zhang S, et al. Effect of amino acid sequence and pH on nanofiber formation of self-assembling peptides EAK16-II and EAK16-IV. Biomacromolecules, 2003, 4(5): 1433–1442PubMedCrossRefGoogle Scholar
  6. 6.
    Ma P X, Zhang R. Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res Part A, 1999, 46(1): 60–72CrossRefGoogle Scholar
  7. 7.
    Ellison C J, Phatak A, Giles D W, et al. Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup. Polymer, 2007, 48(20): 3306–3316CrossRefGoogle Scholar
  8. 8.
    Teo W E, Ramakrishna S. A review on electrospinning design and nanofibre assemblies. Nanotechnology, 2006, 17(14): R89–R106CrossRefPubMedGoogle Scholar
  9. 9.
    Gu B K, Shin M K, Sohn K W, et al. Direct fabrication of twisted nanofibers by electrospinning. Appl Phys Lett, 2007, 90(26): 263902Google Scholar
  10. 10.
    Panda P K, Ramakrishna S. Electrospinning of alumina nanofibers using different precursors. J Mater Sci, 2007, 42(6): 2189–2193CrossRefGoogle Scholar
  11. 11.
    Kim G, Kim W. Formation of oriented nanofibers using electrospinning. Appl Phys Lett, 2006, 88(23): 233101Google Scholar
  12. 12.
    Formhals A. Process and apparatus for preparing artificial threads. US Patent 1975504, 1934Google Scholar
  13. 13.
    Doshi J, Reneker D H. Electrospinning process and applications of electrospun fibers. J Electrostat, 1995, 35(2–3): 151–160CrossRefGoogle Scholar
  14. 14.
    Srinivasan G, Reneker D H. Structure and morphology of small diameter electrospun aramide fibers. Polym Int, 1995, 36(2): 195–201CrossRefGoogle Scholar
  15. 15.
    Reneker D H, Chun I. Nanometer diameter fibres of polymers, produced by electrospinning. Nanotechnology, 1996, 7(3): 216–223CrossRefGoogle Scholar
  16. 16.
    Jaeger R, Schonherr H, Vancso G J. Chain packing in electro-spun poly(ethylene oxide) visualized by atome force microscopy. Macromolecules, 1996, 29(23): 7634–7636CrossRefGoogle Scholar
  17. 17.
    Yarin A L, Koombhongse S, Reneker D H. Bending instability in electrospinning of nanofibers. J Appl Phys, 2001, 89(5): 3018–3026CrossRefGoogle Scholar
  18. 18.
    Li D, Xia Y. Electrospinning of nanofibers: Reinventing the wheel? Adv Mater, 2004, 16(14): 1151–1170CrossRefGoogle Scholar
  19. 19.
    Subbiah T, Bhat G S, Tock R W, et al. Electrospinning of nanofibers. J Appl Polym Sci, 2005, 96(2): 557–569CrossRefGoogle Scholar
  20. 20.
    Greiner A, wendorff J H. Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angew Chem Int Edit, 2007, 46(30): 5670–5703CrossRefGoogle Scholar
  21. 21.
    Theron A, Zussman E, Yarin A L. Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology, 2001, 12(3): 384–390CrossRefGoogle Scholar
  22. 22.
    Li D, Wang Y, Xia Y. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv Mater, 2004, 16(4): 361–366CrossRefGoogle Scholar
  23. 23.
    McCann J T, Li D, Xia Y. Electrospinning of nanofibers with core-sheath, hollow, or porous structures. J Mater Chem, 2005, 15(7): 735–738CrossRefGoogle Scholar
  24. 24.
    Shim W G, Kim C, Lee J W, et al. Adsorption characteristics of benzene on electrospun-derived porous carbon nanofibers. J Appl Polym Sci, 2006, 102(3): 2454–2462CrossRefGoogle Scholar
  25. 25.
    Madhugiri S, Sun B, Smirniotis P G, et al. Electrospun mesoporous titanium dioxide fibers. Micropor Mesopor Mater, 2004, 69(1–2): 77–83CrossRefGoogle Scholar
  26. 26.
    Zhang Y Z, Feng Y, Huang Z M, et al. Fabrication of porous electrospun nanofibres. Nanotechnology, 2006, 17(3): 901–908CrossRefGoogle Scholar
  27. 27.
    McCann J T, Marquez M, Xia Y. Highly porous fibers by electro-spinning into a cryogenic liquid. J Am Chem Soc, 2006, 128(5): 1436–1437PubMedCrossRefGoogle Scholar
  28. 28.
    Sun Z, Zussman E, Yarin A L, et al. Compound core-shell polymer nanofibers by co-electrospinning. Adv Mater, 2003, 15(22): 1929–1932CrossRefGoogle Scholar
  29. 29.
    Li D, Xia Y. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett, 2004, 4(5): 933–938CrossRefGoogle Scholar
  30. 30.
    Lin T, Wang H, Wang X. Self-crimping bicomponent nanofibers electrospun from polyacrylonitrile and elastomeric polyurethane. Adv Mater, 2005, 17(22): 2699–2703CrossRefGoogle Scholar
  31. 31.
    Barhate R S, Ramakrishna S. Nanofibrous filtering media: Filtration problems and solutions from tiny materials. J Membrane Sci, 2007, 296(1–2): 1–8CrossRefGoogle Scholar
  32. 32.
    Gibson P, Schreuder-Gibson H, Pentheny C. Electrospinning technology: Direct application of tailorable ultrathin membranes. J Coated Fabrics, 1998, 28(7): 63–72Google Scholar
  33. 33.
    Bognitzki M, Czado W, Frese T, et al. Nanostructured fibers via electrospinning. Adv Mater, 2001, 13(1): 70–72CrossRefGoogle Scholar
  34. 34.
    Huang Z-M, Zhang Y-Z, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Comp Sci Tech, 2003, 63(15): 2223–2253CrossRefGoogle Scholar
  35. 35.
    Jayaraman K, Kotaki M, Zhang Y, et al. Recent advances in polymer nanofibers. J Nanosci Nanotech, 2004, 4(1–2): 52–65Google Scholar
  36. 36.
    Kameoka J, Czaplewski D, Liu H, et al. Polymeric nanowire architecture. J Mater Chem, 2004, 14(10): 1503CrossRefGoogle Scholar
  37. 37.
    Ma Z, Kotaki M, Inai R, et al. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng, 2005, 11(1–2): 101–109PubMedCrossRefGoogle Scholar
  38. 38.
    Wang Y K, Yong T, Ramakrishna S. Nanofibres and their Influence on cells for tissue regeneration. Austr J Chem, 2005, 58(10): 704–712CrossRefGoogle Scholar
  39. 39.
    Boudriot U, Dersch R, Greiner A, et al. Electrospinning approaches toward scaffold engineering-a brief overview. Artif Organs, 2006, 30(10): 785–792PubMedCrossRefGoogle Scholar
  40. 40.
    Liao S, Li B, Ma Z, et al. Biomimetic electrospun nanofibers for tissue regeneration. Biomed Mater, 2006, 1(3): R45–R53PubMedCrossRefGoogle Scholar
  41. 41.
    Teo W-E, He W, Ramakrishna S. Electrospun scaffold tailored for tissue-specific extracellular matrix. Biotech J, 2006, 1(9): 918–929CrossRefGoogle Scholar
  42. 42.
    Ashammakhi N, Ndreu A, Yang Y, et al. Tissue engineering: A new take-off using nanofiber-based scaffolds. J Craniofac Surg, 2007, 18(1): 3–17PubMedCrossRefGoogle Scholar
  43. 43.
    Lannutti J, Reneker D, Ma T, et al. Electrospinning for tissue engineering scaffolds. Mater Sci Eng C, 2007, 27(3): 504–509CrossRefGoogle Scholar
  44. 44.
    Sell S, Barnes C, Smith M, et al. Extracellular matrix regenerated: Tissue engineering via electrospun biomimetic nanofibers. Polym Int, 2007, 56(11): 1349–1360CrossRefGoogle Scholar
  45. 45.
    Barnes C P, Sell S A, Boland E D, et al. Nanofiber technology: Designing the next generation of tissue engineering scaffolds. Adv Drug Deliver Rev, 2007, 59(14): 1413–1433CrossRefGoogle Scholar
  46. 46.
    Liang D, Hsiao B S, Chu B. Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliver Rev, 2007, 59(14): 1392–1412CrossRefGoogle Scholar
  47. 47.
    Kosmider K, Scott J. Polymeric nanofibres exhibit an enhanced air filtration performance. Filtr Separat, 2002, 39(6): 20–22CrossRefGoogle Scholar
  48. 48.
    Gibson P, Schreuder-Gibson H, Rivin D. Transport properties of porous membranes based on electrospun nanofibers. Coll Surf A: Physicochem Eng Asp, 2001, 187–188(8): 469–481CrossRefGoogle Scholar
  49. 49.
    Shin C, Chase G G, Reneker D H. Recycled expanded polystyrene nanofibers applied in filter media. Coll Surf A: Physicochem Eng Asp, 2005, 262(1–3): 211–215CrossRefGoogle Scholar
  50. 50.
    Shin C, Chase G G, Reneker D H. The effect of nanofibers on liquid-liquid coalescence filter performance. AIChE J, 2005, 51(12): 3109–3113CrossRefGoogle Scholar
  51. 51.
    Wang X, Chen X, Yoon K, et al. High flux filtration medium based on nanofibrous substrate with hydrophilic nanocomposite coating. Environ Sci Tech, 2005, 39(19): 7684–7691CrossRefGoogle Scholar
  52. 52.
    Yoon K, Kim K, Wang X, et al. High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer, 2006, 47(7): 2434–2441CrossRefGoogle Scholar
  53. 53.
    Barhate R S, Loong C K, Ramakrishna S. Preparation and characterization of nanofibrous filtering media. J Membrane Sci, 2006, 283(1–2): 209–218CrossRefGoogle Scholar
  54. 54.
    Gopal R, Kaur S, Ma Z, et al. Electrospun nanofibrous filtration membrane. J Membrane Sci, 2006, 281(1–2): 581–586CrossRefGoogle Scholar
  55. 55.
    Gopal R, Kaur S, Feng C Y, et al. Electrospun nanofibrous polysulfone membranes as pre-filters: Particulate removal. J Membrane Sci, 2007, 289(1–2): 210–219CrossRefGoogle Scholar
  56. 56.
    Ma Z, Kotaki M, Ramakrishna S. Surface modified nonwoven polysulphone (PSU) fiber mesh by electrospinning: A novel affinity membrane. J Membrane Sci, 2006, 272(1–2): 179–187CrossRefGoogle Scholar
  57. 57.
    Ki C S, Gang E H, Um I C, et al. Nanofibrous membrane of wool keratose/silk fibroin blend for heavy metal ion adsorption. J Membrane Sci, 2007, 302(1–2): 20–26CrossRefGoogle Scholar
  58. 58.
    Wang H, Ding J, Lee B, et al. Polypyrrole-coated electrospun nanofibre membranes for recovery of Au(III) from aqueous solution. J Membrane Sci, 2007, 303(1–2): 119–125CrossRefGoogle Scholar
  59. 59.
    Nerem R M, Saltzman A. Tissue engineering: From biology to biological substitutes. Tissue Eng, 1995, 1(1): 3–13CrossRefPubMedGoogle Scholar
  60. 60.
    Ma P X. Tissue Engineering. In: Encyclopedia of Polymer Science and Technology. NJ: John Wiley & Sons, 2004Google Scholar
  61. 61.
    Hay E D. Cell Biology of Extracellular Matrix. NY: Plenum Press, 1991CrossRefGoogle Scholar
  62. 62.
    Elsdale T, Bard J. Collagen substrata for studies on cell behavior. J Cell Biol, 1972, 54(3): 626–637PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Chiu J B, Liu C, Hsiao B S, et al. Functionalization of poly(L-lactide) nanofibrous scaffolds with bioactive collagen molecules. J Biomed Mater Res Part A, 2007, 83A(4): 1117–1127CrossRefGoogle Scholar
  64. 64.
    Venugopal J, Low S, Choon A T, et al. Interaction of cells and nanofiber scaffolds in tissue engineering. J Biomed Mater Res Part B: Appl Biomater, 2008, 84B(1): 34–48CrossRefGoogle Scholar
  65. 65.
    Zhang Y, Lim C T, Ramakrishna S, et al. Recent development of polymer nanofibers for biomedical and biotechnological applications. J Mater Sci: Mater Med, 2005, 16(10): 933–946CrossRefGoogle Scholar
  66. 66.
    Matthews J A, Wnek G E, Simpson D G, et al. Electrospinning of Collagen Nanofibers. Biomacromolecules, 2002, 3(2): 232–238PubMedCrossRefGoogle Scholar
  67. 67.
    Kenawy E-R, Layman J M, Watkins J R, et al. Electrospinning of poly(ethylene-co-vinyl alcohol) fibers. Biomaterials, 2003, 24(6): 907–913CrossRefGoogle Scholar
  68. 68.
    Stankus J J, Guan J, Wagner W R. Fabrication of biodegradable elastomeric scaffolds with sub-micron morphologies. J Biomed Mater Res Part A, 2004, 70A(4): 603–614CrossRefGoogle Scholar
  69. 69.
    Mo X M, Xu C Y, Kotaki M, et al. Electrospun P(LLA-CL) nanofiber: A biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials, 2004, 25(10): 1883–1890PubMedCrossRefGoogle Scholar
  70. 70.
    Venugopal J, Zhang Y Z, Ramakrishna S. Fabrication of modified and functionalized polycaprolactone nanofibre scaffolds for vascular tissue engineering. Nanotechnology, 2005, 16(10): 2138–2142CrossRefPubMedGoogle Scholar
  71. 71.
    Baker S C, Atkin N, Gunning P A, et al. Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies. Biomaterials, 2006, 27(16): 3136–3146PubMedCrossRefGoogle Scholar
  72. 72.
    Riboldi S A, Sampaolesi M, Neuenschwander P, et al. Electrospun degradable polyesterurethane membranes: Potential scaffolds for skeletal muscle tissue engineering. Biomaterials, 2005, 26(22): 4606–4615PubMedCrossRefGoogle Scholar
  73. 73.
    Li W-J, Laurencin C T, Caterson E J, et al. Electrospun nanofibrous structure: A novel scaffold for tissue engineering. J Biomed Mater Res, 2002, 60(4): 613–621PubMedCrossRefGoogle Scholar
  74. 74.
    Yoshimoto H, Shin Y M, Terai H, et al. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials, 2003, 24(12): 2077–2082PubMedCrossRefGoogle Scholar
  75. 75.
    Li W-J, Tuli R, Huang X, et al. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials, 2005, 26(25): 5158–5166PubMedCrossRefGoogle Scholar
  76. 76.
    Shin M, Yoshimoto H, Vacanti J P. In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Eng, 2004, 10(1–2): 33–41PubMedCrossRefGoogle Scholar
  77. 77.
    Zhang Y, Ouyang H, Lim C T, et al. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res Part B: Appl Biomater, 2005, 72B(1): 156–165CrossRefGoogle Scholar
  78. 78.
    Fujihara K, Kotaki M, Ramakrishna S. Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials, 2005, 26(19): 4139–4147PubMedCrossRefGoogle Scholar
  79. 79.
    Wutticharoenmongkol P, Sanchavanakit N, Pavasant P, et al. Novel bone scaffolds of electrospun polycaprolactone fibers filled with nanoparticles. J Nanosci Nanotech, 2006, 6(2): 514–522CrossRefGoogle Scholar
  80. 80.
    Wutticharoenmongkol P, Sanchavanakit N, Pavasant P, et al. Preparation and characterization of novel bone scaffolds based on electrospun polycaprolactone fibers filled with nanoparticles. Macromolecul Biosci, 2006, 6(1): 70–77CrossRefGoogle Scholar
  81. 81.
    Wutticharoenmongkol P, Pavasant P, Supaphol P. Osteoblastic phenotype expression of MC3T3-E1 cultured on electrospun polycaprolactone fiber mats filled with hydroxyapatite nanoparticles. Biomacromolecules, 2007, 8(8): 2602–2610PubMedCrossRefGoogle Scholar
  82. 82.
    Duan B, Wu L, Li X, et al. Degradation of electrospun PLGA-chitosan/PVA membranes and their cytocompatibility in vitro. J Biomater Sci Polym Edit, 2007, 18(1): 95–115CrossRefGoogle Scholar
  83. 83.
    Tuzlakoglu K, Bolgen N, Salgado A J, et al. Nano-and micro-fiber combined scaffolds: A new architecture for bone tissue engineering. J Mater Sci: Mater Med, 2005, 16(12): 1099–1104CrossRefGoogle Scholar
  84. 84.
    Pham Q P, Sharma U, Mikos A G. Electrospun poly(e-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: Characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules, 2006, 7(10): 2796–2805PubMedCrossRefGoogle Scholar
  85. 85.
    Jin H J, Chen J, Karageorgiou V, et al. Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials, 2004, 25(6): 1039–1047PubMedCrossRefGoogle Scholar
  86. 86.
    Kim K-H, Jeong L, Park H-N, et al. Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. J Biotech, 2005, 120(3): 327–339CrossRefGoogle Scholar
  87. 87.
    Xu X, Zhuang X, Chen X, et al. Preparation of core-sheath composite nanofibers by emulsion electrospinning. Macromol Rapid Comm, 2006, 27(19): 1637–1642CrossRefGoogle Scholar
  88. 88.
    Kim K, Yu M, Zong X, et al. Control of degradation rate and hydrophilicity in electrospun non-woven poly(d,l-lactide) nanofiber scaffolds for biomedical applications. Biomaterials, 2003, 24(27): 4977–4985PubMedCrossRefGoogle Scholar
  89. 89.
    Henry J A, Simonet M, Pandit A, et al. Characterization of a slowly degrading biodegradable polyesterurethane for tissue engineering scaffolds. J Biomed Mater Res Part A, 2007, 82A(3): 669–679CrossRefGoogle Scholar
  90. 90.
    Nair L S, Bhattacharyya S, Bender J D, et al. Fabrication and optimization of methylphenoxy substituted polyphosphazene nanofibers for biomedical applications. Biomacromolecules, 2004, 5(6): 2212–2220PubMedCrossRefGoogle Scholar
  91. 91.
    Badami A S, Kreke M R, Thompson M S, et al. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials, 2006, 27(4): 596–606PubMedCrossRefGoogle Scholar
  92. 92.
    Lee Y H, Lee J H, An I-G, et al. Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds. Biomaterials, 2005, 26(16): 3165–3172PubMedCrossRefGoogle Scholar
  93. 93.
    Sakai S, Yamada Y, Yamaguchi T, et al. Prospective use of electrospun ultra-fine silicate fibers for bone tissue engineering. Biotech J, 2006, 1(9): 958–962CrossRefGoogle Scholar
  94. 94.
    Moroni L, Licht R, De Boer J, et al. Fiber diameter and texture of electrospun PEOT/PBT scaffolds influence human mesenchymal stem cell proliferation and morphology, and the release of incorporated compounds. Biomaterials, 2006, 27(28): 4911–4922PubMedCrossRefGoogle Scholar
  95. 95.
    Zhang J, Qi H, Wang H, et al. Engineering of vascular grafts with genetically modified bone marrow mesenchymal stem cells on poly (propylene carbonate) graft. Artif Organs, 2006, 30(12): 898–905PubMedCrossRefGoogle Scholar
  96. 96.
    Sombatmankhong K, Sanchavanakit N, Pavasant P, et al. Bone scaffolds from electrospun fiber mats of poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and their blend. Polymer, 2007, 48(5): 1419–1427CrossRefGoogle Scholar
  97. 97.
    Xin X, Hussain M, Mao Jeremy J. Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials, 2007, 28(2): 316–325PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Deng X-L, Sui G, Zhao M-L, et al. Poly(L-lactic acid)/hydroxyapatite hybrid nanofibrous scaffolds prepared by electrospinning. J Biomater Sci Polym Edit, 2007, 18(1): 117–130CrossRefGoogle Scholar
  99. 99.
    Matthews J A, Boland E D, Wnek G E, et al. Electrospinning of collagen type II: A feasibility study. J Bioact Compat Polym, 2003, 18(2): 125–134CrossRefGoogle Scholar
  100. 100.
    Shields K J, Beckman M J, Bowlin G L, et al. Mechanical properties and cellular proliferation of electrospun collagen type II. Tissue Eng, 2004, 10(9–10): 1510–1517PubMedCrossRefGoogle Scholar
  101. 101.
    Li W-J, Danielson K G, Alexander P G, et al. Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(ɛ-caprolactone) scaffolds. J Biomed Mater Res Part A, 2003, 67A(4): 1105–1114CrossRefGoogle Scholar
  102. 102.
    Lee I S, Kwon O H, Meng W, et al. Nanofabrication of microbial polyester by electrospinning promotes cell attachment. Macromol Res, 2004, 12(4): 374–378CrossRefGoogle Scholar
  103. 103.
    Kwon O H, Lee I S, Ko Y-G, et al. electrospinning of microbial polyester for cell culture. Biomed Mater, 2007, 2(1): S52–S58PubMedCrossRefGoogle Scholar
  104. 104.
    Subramanian A, Vu D, Larsen G F, et al. Preparation and evaluation of the electrospun chitosan/PEO fibers for potential applications in cartilage tissue engineering. J Biomater Sci, Polym Edit, 2005, 16(7): 861–873CrossRefGoogle Scholar
  105. 105.
    Bhattarai N, Edmondson D, Veiseh O, et al. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials, 2005, 26(31): 6176–6184PubMedCrossRefGoogle Scholar
  106. 106.
    Shin H J, Lee C H, Cho I H, et al. Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: Mechanical stability, degradation and cellular responses under mechanical stimulation in vitro. J Biomater Sci Polym Edit, 2006, 17(1–2): 103–119CrossRefGoogle Scholar
  107. 107.
    Min B-M, Lee G, Kim S H, et al. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials, 2003, 25(7–8): 1289–1297Google Scholar
  108. 108.
    Chang Seok Ki J W K, Jin Ho Hyun, Ki Hoon Lee, Masahiro Hattori, Dong Kyun Rah, Young Hwan Park, Electrospun three-dimensional silk fibroin nanofibrous scaffold. J Appl Polym Sci, 2007, 106(6): 3922–3928CrossRefGoogle Scholar
  109. 109.
    Zhong S, Teo W E, Zhu X, et al. An aligned nanofibrous collagen scaffold by electrospinning and its effects on in vitro fibroblast culture. J Biomed Mater Res Part A, 2006, 79A(3): 456–463CrossRefGoogle Scholar
  110. 110.
    Rho K S, Jeong L, Lee G, et al. Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials, 2006, 27(8): 1452–1461PubMedCrossRefGoogle Scholar
  111. 111.
    Zhong S P, Teo W E, Zhu X, et al. Development of a novel collagen-GAG nanofibrous scaffold via electrospinning. Mater Sci Eng C: Biomim Supramol Syst, 2007, 27(2): 262–266CrossRefGoogle Scholar
  112. 112.
    Meng W, Kim S-Y, Yuan J, et al. Electrospun PHBV/collagen composite nanofibrous scaffolds for tissue engineering. J Biomater Sci Polym Edit, 2007, 18(1): 81–94CrossRefGoogle Scholar
  113. 113.
    Zhang Y Z, Venugopal J, Huang Z M, et al. Crosslinking of the electrospun gelatin nanofibers. Polymer, 2006, 47(8): 2911–2917CrossRefGoogle Scholar
  114. 114.
    Duan B, Wu L, Yuan X, et al. Hybrid nanofibrous membranes of PLGA/chitosan fabricated via an electrospinning array. J Biomed Mater Res Part A, 2007, 83A(3): 868–878CrossRefGoogle Scholar
  115. 115.
    Ji Y, Ghosh K, Shu X Z, et al. Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials, 2006, 27(20): 3782–3792PubMedCrossRefGoogle Scholar
  116. 116.
    Ji Y, Ghosh K, Li B, et al. Dual-syringe reactive electrospinning of cross-linked hyaluronic acid hydrogel nanofibers for tissue engineering applications. Macromol Biosci, 2006, 6(10): 811–817PubMedCrossRefGoogle Scholar
  117. 117.
    Pan H, Jiang H, Chen W. Interaction of dermal fibroblasts with electrospun composite polymer scaffolds prepared from dextran and poly(lactide-co-glycolide). Biomaterials, 2006, 27(17): 3209–3220PubMedCrossRefGoogle Scholar
  118. 118.
    Bhattarai S R, Bhattarai N, Viswanathamurthi P, et al. Hydrophilic nanofibrous structure of polylactide: Fabrication and cell affinity. J Biomed Mater Res Part A, 2006, 78A(2): 247–257CrossRefGoogle Scholar
  119. 119.
    Sun T, Norton D, McKean R J, et al. Development of a 3D cell culture system for investigating cell interactions with electrospun fibers. Biotech Bioeng, 2007, 97(5): 1318–1328CrossRefGoogle Scholar
  120. 120.
    Park K, Jung H J, Kim J-J, et al. Acrylic acid-grafted hydrophilic electrospun nanofibrous poly(L-lactic acid) scaffold. Macromol Res, 2006, 14(5): 552–558CrossRefGoogle Scholar
  121. 121.
    Park K, Ju Y M, Son J S, et al. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts. J Biomater Sci Polym Edit, 2007, 18(4): 369–382CrossRefGoogle Scholar
  122. 122.
    Spasova M, Stoilova O, Manolova N, et al. Preparation of PLLA/PEG nanofibers by electrospinning and potential applications. J Bioact Comp Polym, 2007, 22(1): 62–76CrossRefGoogle Scholar
  123. 123.
    Zhang Y Z, Venugopal J, Huang Z M, et al. Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules, 2005, 6(5): 2583–2589PubMedCrossRefGoogle Scholar
  124. 124.
    Venugopal J R, Zhang Y, Ramakrishna S. In vitro culture of human dermal fibroblasts on electrospun polycaprolactone collagen nanofibrous membrane. Artif Organs, 2006, 30(6): 440–446PubMedCrossRefGoogle Scholar
  125. 125.
    Chen M, Patra P K, Warner S B, et al. Optimization of electrospinning process parameters for tissue engineering scaffolds. Biophys Rev Lett, 2006, 1(2): 189–214CrossRefGoogle Scholar
  126. 126.
    Kim G, Kim W. Highly porous 3D nanofiber scaffold using an electrospinning technique. J Biomed Mater Res Part B: Appl Biomater, 2007, 81B(1): 104–110CrossRefGoogle Scholar
  127. 127.
    Chen M, Patra P K, Warner S B, et al. Role of fiber diameter in adhesion and proliferation of NIH 3T3 fibroblast on electrospun polycaprolactone scaffolds. Tissue Eng, 2007, 13(3): 579–587PubMedCrossRefGoogle Scholar
  128. 128.
    Bhattarai S R, Bhattarai N, Yi H K, et al. Novel biodegradable electrospun membrane: scaffold for tissue engineering. Biomaterials, 2004, 25(13): 2595–2602PubMedCrossRefGoogle Scholar
  129. 129.
    Jin H-J, Hwang M-O, Yoon J S, et al. Preparation and characterization of electrospun poly(L-lactic acid-co-succinic acid-co-1,4-butane diol) fibrous membranes. Macromol Res, 2005, 13(1): 73–79CrossRefGoogle Scholar
  130. 130.
    Suwantong O, Waleetorncheepsawat S, Sanchavanakit N, et al. In vitro biocompatibility of electrospun poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fiber mats. International J Biol Macromol, 2007, 40(3): 217–223CrossRefGoogle Scholar
  131. 131.
    Khanam N, Mikoryak C, Draper R K, et al. Electrospun linear polyethyleneimine scaffolds for cell growth. Acta Biomater, 2007, 3(6): 1050–1059PubMedCrossRefGoogle Scholar
  132. 132.
    Zhao P, Jiang H, Pan H, et al. Biodegradable fibrous scaffolds composed of gelatin coated poly(ɛ-caprolactone) prepared by coaxial electrospinning. J Biomed Mater Res Part A, 2007, 83A(2): 372–382CrossRefGoogle Scholar
  133. 133.
    Duan B, Yuan X, Zhu Y, et al. A nanofibrous composite membrane of PLGA-chitosan/PVA prepared by electrospinning. Europ Polym J, 2006, 42(9): 2013–2022CrossRefGoogle Scholar
  134. 134.
    Kim T G, Park T G. Biomimicking extracellular matrix: Cell adhesive RGD peptide modified electrospun poly(D,L-lactic-co-glycolic acid) nanofiber mesh. Tissue Eng, 2006, 12(2): 221–233PubMedCrossRefGoogle Scholar
  135. 135.
    Xu C, Yang F, Wang S, et al. In vitro study of human vascular endothelial cell function on materials with various surface roughness. J Biomed Mater Res Part A, 2004, 71A(1): 154–161CrossRefGoogle Scholar
  136. 136.
    Rubenstein D, Han D, Goldgraben S, et al. Bioassay chamber for angiogenesis with perfused explanted arteries and electrospun scaffolding. Microcirculation, 2007, 14(7): 723–737PubMedCrossRefGoogle Scholar
  137. 137.
    Vaz C M, van Tuijl S, Bouten C V C, et al. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomater, 2005, 1(5): 575–582PubMedCrossRefGoogle Scholar
  138. 138.
    Ma Z, He W, Yong T, et al. Grafting of gelatin on electrospun poly(ɛ-caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell orientation. Tissue Eng, 2005, 11(7–8): 1149–1158PubMedCrossRefGoogle Scholar
  139. 139.
    Ma Z, Kotaki M, Yong T, et al. Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials, 2005, 26(15): 2527–2536PubMedCrossRefGoogle Scholar
  140. 140.
    Casper C L, Yang W, Farach-Carson M C, et al. Coating electrospun collagen and gelatin fibers with perlecan domain I for increased growth factor binding. Biomacromolecules, 2007, 8(4): 1116–1123PubMedCrossRefGoogle Scholar
  141. 141.
    Zhu Y, Leong Meng F, Ong Wey F, et al. Esophageal epithelium regeneration on fibronectin grafted poly(L-lactide-co-caprolactone) (PLLC) nanofiber scaffold. Biomaterials, 2007, 28(5): 861–868PubMedCrossRefGoogle Scholar
  142. 142.
    Sell S A, McClure M J, Barnes C P, et al. Electrospun polydioxanone-elastin blends: Potential for bioresorbable vascular grafts. Biomed Mater, 2006, 1(2): 72–80PubMedCrossRefGoogle Scholar
  143. 143.
    Lee S J, Yoo J J, Lim G J, et al. In vitro evaluation of electrospun nanofiber scaffolds for vascular graft application. J Biomed Mater Res Part A, 2007, 83A(4): 999–1008CrossRefGoogle Scholar
  144. 144.
    Stankus J J, Soletti L, Fujimoto K, et al. Fabrication of cell microintegrated blood vessel constructs through electrohydrodynamic atomization. Biomaterials, 2007, 28(17): 2738–2746PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Stitzel J, Liu J, Lee S J, et al. Controlled fabrication of a biological vascular substitute. Biomaterials, 2006, 27(7): 1088–1094PubMedCrossRefGoogle Scholar
  146. 146.
    Telemeco T A, Ayres C, Bowlin G L, et al. Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning. Acta biomater, 2005, 1(4): 377–385PubMedCrossRefGoogle Scholar
  147. 147.
    Carampin P, Conconi M T, Lora S, et al. Electrospun polyphosphazene nanofibers for in vitro rat endothelial cells proliferation. J Biomed Mater Res Part A, 2007, 80A(3): 661–668CrossRefGoogle Scholar
  148. 148.
    Kwon I K, Kidoaki S, Matsuda T. Electrospun nano-to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials, 2005, 26(18): 3929–3939PubMedCrossRefGoogle Scholar
  149. 149.
    Yang F, Xu C Y, Kotaki M, et al. Characterization of neural stem cells on electrospun poly(L-lactic acid) nanofibrous scaffold. J Biomater Sci Polym Edit, 2004, 15(12): 1483–1497CrossRefGoogle Scholar
  150. 150.
    Yang F, Murugan R, Wang S, et al. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials, 2005, 26(15): 2603–2610PubMedCrossRefGoogle Scholar
  151. 151.
    Sangsanoh P, Waleetorncheepsawat S, Suwantong O, et al. In vitro biocompatibility of schwann cells on surfaces of biocompatible polymeric electrospun fibrous and solution-cast film scaffolds. Biomacromolecules, 2007, 8(5): 1587–1594PubMedCrossRefGoogle Scholar
  152. 152.
    Schnell E, Klinkhammer K, Balzer S, et al. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly(e-caprolactone) and a collagen/poly(e-caprolactone) blend. Biomaterials, 2007, 28(19): 3012–3025PubMedCrossRefGoogle Scholar
  153. 153.
    Bini T B, Gao S, Tan T C, et al. Electrospun poly(L-lactide-coglycolide) biodegradable polymer nanofiber tubes for peripheral nerve regeneration. Nanotechnology, 2004, 15(11): 1459–1464CrossRefGoogle Scholar
  154. 154.
    Bini T B, Gao S, Wang S, et al. Poly(l-lactide-co-glycolide) biodegradable microfibers and electrospun nanofibers for nerve tissue engineering: An in vitro study. J Mater Sci, 2006, 41(19): 6453–6459CrossRefGoogle Scholar
  155. 155.
    Ito Y, Hasuda H, Kamitakahara M, et al. A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material. J Biosci Bioeng, 2005, 100(1): 43–49PubMedCrossRefGoogle Scholar
  156. 156.
    Li M, Mondrinos M J, Gandhi M R, et al. Electrospun protein fibers as matrices for tissue engineering. Biomaterials, 2005, 26(30): 5999–6008PubMedCrossRefGoogle Scholar
  157. 157.
    Boudriot U, Goetz B, Dersch R, et al. Role of electrospun nanofibers in stem cell technologies and tissue engineering. Macromol Symp, 2005, 225(1): 9–16CrossRefGoogle Scholar
  158. 158.
    Kang X, Xie Y, Powell H M, et al. Adipogenesis of murine embryonic stem cells in a three-dimensional culture system using electrospun polymer scaffolds. Biomaterials, 2007, 28(3): 450–458PubMedCrossRefGoogle Scholar
  159. 159.
    Meechaisue C, Dubin R, Supaphol P, et al. Electrospun mat of tyrosine-derived polycarbonate fibers for potential use as tissue scaffolding material. J Biomater Sci Polym Edit, 2006, 17(9): 1039–1056CrossRefGoogle Scholar
  160. 160.
    Chua K-N, Chai C, Lee P-C, et al. Surface-aminated electrospun nanofibers enhance adhesion and expansion of human umbilical cord blood hematopoietic stem/progenitor cells. Biomaterials, 2006, 27(36): 6043–6051PubMedCrossRefGoogle Scholar
  161. 161.
    Zong X, Bien H, Chung C-Y, et al. Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials, 2005, 26(26): 5330–5338PubMedCrossRefGoogle Scholar
  162. 162.
    Li M, Guo Y, Wei Y, et al. Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials, 2006, 27(13): 2705–2715PubMedCrossRefGoogle Scholar
  163. 163.
    Lee C H, Shin H J, Cho I H, et al. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials, 2005, 26(11): 1261–1270PubMedCrossRefGoogle Scholar
  164. 164.
    Bashur C A, Dahlgren L A, Goldstein A S. Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D,L-lactic-co-glycolic acid) meshes. Biomaterials, 2006, 27(33): 5681–5688PubMedCrossRefGoogle Scholar
  165. 165.
    Marler J J, Upton J, Langer R, et al. Transplantation of cells in matrixes for tissue regeneration. Adv Drug Deliver Rev, 1998, 33(1–2): 165–182CrossRefGoogle Scholar
  166. 166.
    Khil M-s, Cha D-i, Kim H-y, et al. Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res Part B: Appl Biomater, 2003, 67B(2): 675–679CrossRefGoogle Scholar
  167. 167.
    Noh H K, Lee S W, Kim J-M, et al. Electrospinning of chitin nanofibers: Degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials, 2006, 27(21): 3934–3944PubMedCrossRefGoogle Scholar
  168. 168.
    Ignatova M, Manolova N, Rashkov I. Electrospinning of poly(vinyl pyrrolidone)-iodine complex and poly(ethylene oxide)/poly(vinyl pyrrolidone)-iodine complex—a prospective route to antimicrobial wound dressing materials. Europ Polym J, 2007, 43(5): 1609–1623CrossRefGoogle Scholar
  169. 169.
    Chong E J, Phan T T, Lim I J, et al. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater, 2007, 3(3): 321–330PubMedCrossRefGoogle Scholar
  170. 170.
    Choi J S, Leong K W, Yoo H S. In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF). Biomaterials, 2008, 29(5): 587–596PubMedCrossRefGoogle Scholar
  171. 171.
    DeCherney A H, DiZerega G S. Clinical problem of intraperitoneal postsurgical adhesion formation following general surgery and the use of adhesion prevention barriers. Surg Clinics North Am, 1997, 77(3): 671–688CrossRefGoogle Scholar
  172. 172.
    Menzies D. Peritoneal adhesions. Incidence, cause, and prevention. Surg Ann, 1992, 24: 27–45Google Scholar
  173. 173.
    Bolgen N, Vargel I, Korkusuz P, et al. In vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions. J Biomed Mater Res Part B: Appl Biomater, 2007, 81B(2): 530–543CrossRefGoogle Scholar
  174. 174.
    Hong K H. Preparation and properties of electrospun poly(vinyl alcohol)/silver fiber web as wound dressings. Polymer Eng Sci, 2007, 47(1): 43–49CrossRefGoogle Scholar
  175. 175.
    Jia J, Duan Y-y, Wang S-h, et al. Preparation and characterization of antibacterial silver-containing nanofibers for wound dressing applications. J US-China Med Sci, 2007, 4(2): 52–54Google Scholar
  176. 176.
    Lala N L, Ramaseshan R, Li B, et al. Fabrication of nanofibers with antimicrobial functionality used as filters: protection against bacterial contaminants. Biotech Bioeng, 2007, 97(6): 1357–1365CrossRefGoogle Scholar
  177. 177.
    Spadaro J A, Berger T J, Barranco S D, et al. Antibacterial effects of silver electrodes with weak direct current. Antimicrob Agents Chemother, 1974, 6(5): 637–642PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Jeong E H, Yang J, Youk J H. Preparation of polyurethane cationomer nanofiber mats for use in antimicrobial nanofilter applications. Mater Lett, 2007, 61(18): 3991–3994CrossRefGoogle Scholar
  179. 179.
    Yih T C, Al-Fandi M. Engineered nanoparticles as precise drug delivery systems. J Cell Biochem, 2006, 97(6): 1184–1190PubMedCrossRefGoogle Scholar
  180. 180.
    Kenawy E-R, Bowlin G L, Mansfield K, et al. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J Contr Rel, 2002, 81(1–2): 57–64CrossRefGoogle Scholar
  181. 181.
    Luong-Van E, Grondahl L, Chua K N, et al. Controlled release of heparin from poly(e-caprolactone) electrospun fibers. Biomaterials, 2006, 27(9): 2042–2050PubMedCrossRefGoogle Scholar
  182. 182.
    Jiang H, Hu Y, Zhao P, et al. Modulation of protein release from biodegradable core-shell structured fibers prepared by coaxial electrospinning. J Biomed Mater Res Part B: Appl Biomater, 2006, 79B(1): 50–57CrossRefGoogle Scholar
  183. 183.
    Zong X, Kim K, Fang D, et al. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 2002, 43(16): 4403–4412CrossRefGoogle Scholar
  184. 184.
    Zeng J, Xu X, Chen X, et al. Biodegradable electrospun fibers for drug delivery. J Contr Rel, 2003, 92(3): 227–231CrossRefGoogle Scholar
  185. 185.
    Xu X, Yang L, Xu X, et al. Ultrafine medicated fibers electrospun from W/O emulsions. J Contr Rel, 2005, 108(1): 33–42CrossRefGoogle Scholar
  186. 186.
    Qi H, Hu P, Xu J, et al. Encapsulation of drug reservoirs in fibers by emulsion electrospinning: morphology characterization and preliminary release assessment. Biomacromolecules, 2006, 7(8): 2327–2330PubMedCrossRefGoogle Scholar
  187. 187.
    Luu Y K, Kim K, Hsiao B S, et al. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J Contr Rel, 2003, 89(2): 341–353CrossRefGoogle Scholar
  188. 188.
    Kim K, Luu Y K, Chang C, et al. Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J Contr Rel, 2004, 98(1): 47–56CrossRefGoogle Scholar
  189. 189.
    Taepaiboon P, Rungsardthong U, Supaphol P. Drug-loaded electrospun mats of poly(vinyl alcohol) fibres and their release characteristics of four model drugs. Nanotechnology, 2006, 17(9): 2317–2329CrossRefGoogle Scholar
  190. 190.
    Yang D, Li Y, Nie J. Preparation of gelatin/PVA nanofibers and their potential application in controlled release of drugs. Carbohydr Polym, 2007, 69(3): 538–543CrossRefGoogle Scholar
  191. 191.
    Kenawy E-R, Abdel-Hay F I, El-Newehy M H, et al. Controlled release of ketoprofen from electrospun poly(vinyl alcohol) nanofibers. Mater Sci Eng A: Struct Mater Prop Microstruct Proc, 2007, A459(1–2): 390–396CrossRefGoogle Scholar
  192. 192.
    Jiang H, Fang D, Hsiao B, et al. Preparation and characterization of ibuprofen-loaded poly(lactide-co-glycolide)/poly(ethylene glycol)-g-chitosan electrospun membranes. J Biomater Sci Polym Edit, 2004, 15(3): 279–296CrossRefGoogle Scholar
  193. 193.
    Kim T G, Lee D S, Park T G. Controlled protein release from electrospun biodegradable fiber mesh composed of poly(e-caprolactone) and poly(ethylene oxide). Int J Pharm, 2007, 338(1–2): 276–283PubMedCrossRefGoogle Scholar
  194. 194.
    Verreck G, Chun I, Rosenblatt J, et al. Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer. J Contr Rel, 2003, 92(3): 349–360CrossRefGoogle Scholar
  195. 195.
    Verreck G, Chun I, Peeters J, et al. Preparation and characterization of nanofibers containing amorphous drug dispersions generated by electrostatic spinning. Pharm Res, 2003, 20(5): 810–817PubMedCrossRefGoogle Scholar
  196. 196.
    Cui W, Li X, Zhu X, et al. Investigation of drug release and matrix degradation of electrospun poly(DL-lactide) fibers with paracetanol inoculation. Biomacromolecules, 2006, 7(5): 1623–1629PubMedCrossRefGoogle Scholar
  197. 197.
    Xie J, Wang C. Electrospun micro-and nanofibers for sustained delivery of paclitaxel to treat C6 glioma in vitro. Pharm Res, 2006, 23(8): 1817–1826PubMedCrossRefGoogle Scholar
  198. 198.
    Wang M, Wang L, Huang Y. Electrospun hydroxypropyl methyl cellulose phthalate (HPMCP)/erythromycin fibers for targeted release in intestine. J Appl Polym Sci, 2007, 106(4): 2177–2184CrossRefGoogle Scholar
  199. 199.
    Tungprapa S, Jangchud I, Supaphol P. Release characteristics of four model drugs from drug-loaded electrospun cellulose acetate fiber mats. Polymer, 2007, 48(17): 5030–5041CrossRefGoogle Scholar
  200. 200.
    Pornsopone V, Supaphol P, Rangkupan R, et al. Electrospun methacrylate-based copolymer/indomethacin fibers and their release characteristics of indomethacin. J Polym Res, 2007, 14(1): 53–59CrossRefGoogle Scholar
  201. 201.
    Zeng J, Aigner A, Czubayko F, et al. Poly(vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings. Biomacromolecules, 2005, 6(3): 1484–1488PubMedCrossRefGoogle Scholar
  202. 202.
    Chunder A, Sarkar S, Yu Y, et al. Fabrication of ultrathin polyelectrolyte fibers and their controlled release properties. Coll Surf B: Biointerf, 2007, 58(2): 172–179CrossRefGoogle Scholar
  203. 203.
    Jiang H, Hu Y, Li Y, et al. A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents. J Contr Rel, 2005, 108(2–3): 237–243CrossRefGoogle Scholar
  204. 204.
    Chew S Y, Wen J, Yim E K F, et al. Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules, 2005, 6(4): 2017–2024PubMedCrossRefGoogle Scholar
  205. 205.
    Zeng J, Yang L, Liang Q, et al. Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. J Contr Rel, 2005, 105(1–2): 43–51CrossRefGoogle Scholar
  206. 206.
    Huang Z-M, He C-L, Yang A, et al. Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning. J Biomed Mater Res Part A, 2006, 77A(1): 169–179CrossRefGoogle Scholar
  207. 207.
    Zhang Y Z, Wang X, Feng Y, et al. Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(e-caprolactone) nanofibers for sustained release. Biomacromolecules, 2006, 7(4): 1049–1057PubMedCrossRefGoogle Scholar
  208. 208.
    Taepaiboon P, Rungsardthong U, Supaphol P. Effect of cross-linking on properties and release characteristics of sodium salicylate-loaded electrospun poly(vinyl alcohol) fibre mats. Nanotechnology, 2007, 18(17): 175102Google Scholar
  209. 209.
    Demir M M, Gulgun M A, Menceloglu Y Z, et al. Palladium nanoparticles by electrospinning from poly(acrylonitrile-co-acrylic acid)-PdCl2 solutions. Relations between preparation conditions, particle size, and catalytic activity. Macromolecules, 2004, 37(5): 1787–1792CrossRefGoogle Scholar
  210. 210.
    Yu J, Liu T. Preparation of nano-fiber supported palladium catalysts and their use for the catalytic hydrogenation of olefins. Acta Polym Sin, 2007, (6): 514–518Google Scholar
  211. 211.
    Patel A C, Li S, Wang C, et al. Electrospinning of porous silica nanofibers containing silver nanoparticles for catalytic applications. Chem Mater, 2007, 19(6): 1231–1238CrossRefGoogle Scholar
  212. 212.
    Stasiak M, Studer A, Greiner A, et al. Polymer fibers as carriers for homogeneous catalysts. Chem A Europ J, 2007, 13(21): 6150–6156CrossRefGoogle Scholar
  213. 213.
    Chen L, Bromberg L, Hatton T A, et al. Catalytic hydrolysis of p-nitrophenyl acetate by electrospun polyacrylamidoxime nanofibers. Polymer, 2007, 48(16): 4675–4682CrossRefGoogle Scholar
  214. 214.
    Zhan S, Chen D, Jiao X, et al. Long TiO2 hollow fibers with mesoporous walls: Sol-gel combined electrospun fabrication and photocatalytic properties. J Phys Chem B, 2006, 110(23): 11199–11204PubMedCrossRefGoogle Scholar
  215. 215.
    Jin M, Zhang X, Emeline A V, et al. Fibrous TiO2-SiO2 nanocomposite photocatalyst. Chem Commun, 2006, (43): 4483–4485Google Scholar
  216. 216.
    Matatov-Meytal Y, Sheintuch M. Catalytic fibers and cloths. Appl Catal A, 2002, 231(1–2): 1–16CrossRefGoogle Scholar
  217. 217.
    Li S-F, Chen J-P, Wu W-T. Electrospun polyacrylonitrile nanofibrous membranes for lipase immobilization. J Mol Catal B: Enzym, 2007, 47(3–4): 117–124CrossRefGoogle Scholar
  218. 218.
    Huang X-J, Ge D, Xu Z-K. Preparation and characterization of stable chitosan nanofibrous membrane for lipase immobilization. Europ Polym J, 2007, 43(9): 3710–3718CrossRefGoogle Scholar
  219. 219.
    Ye P, Xu Z-K, Wu J, et al. Nanofibrous membranes containing reactive groups: Electrospinning from poly(acrylonitrile-co-maleic acid) for lipase immobilization. Macromolecules, 2006, 39(3): 1041–1045CrossRefGoogle Scholar
  220. 220.
    Lee K H, Ki C S, Baek D H, et al. Application of electrospun silk fibroin nanofibers as an immobilization support of enzyme. Fibers Polym, 2005, 6(3): 181–185CrossRefGoogle Scholar
  221. 221.
    Jia H, Zhu G, Vugrinovich B, et al. Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotech Prog, 2002, 18(5): 1027–1032CrossRefGoogle Scholar
  222. 222.
    Kim T G, Park T G. Surface Functionalized Electrospun Biodegradable Nanofibersfor Immobilization of Bioactive Molecules. Biotech Prog, 2006, 22(4): 1108–1113CrossRefGoogle Scholar
  223. 223.
    Kim B C, Nair S, Kim J, et al. Preparation of biocatalytic nanofibers with high activity and stability via enzyme aggregate coating on polymer nanofibers. Nanotechnology, 2005, 16(7): 382–388CrossRefGoogle Scholar
  224. 224.
    Wang Z-G, Xu Z-K, Wan L-S, et al. Nanofibrous membranes containing carbon nanotubes: electrospun for redox enzyme immobilization. Macromol Rapid Commun, 2006, 27(7): 516–521CrossRefGoogle Scholar
  225. 225.
    Wang Z-G, Ke B-B, Xu Z-K. Covalent immobilization of redox enzyme on electrospun nonwoven poly(acrylonitrile-co-acrylic acid) nanofiber mesh filled with carbon nanotubes: a comprehensive study. Biotech Bioeng, 2007, 97(4): 708–720CrossRefGoogle Scholar
  226. 226.
    Xie J, Hsieh Y-L. Ultra-high surface fibrous membranes from electrospinning of natural proteins: casein and lipase enzyme. J Mater Sci, 2003, 38(10): 2125–2133CrossRefGoogle Scholar
  227. 227.
    Herricks T E, Kim S-H, Kim J, et al. Direct fabrication of enzyme-carrying polymer nanofibers by electrospinning. J Mater Chem, 2005, 15(31): 3241–3245CrossRefGoogle Scholar
  228. 228.
    Nakane K, Hotta T, Ogihara T, et al. Synthesis of (Z)-3-hexen-1-yl acetate by lipase immobilized in polyvinyl alcohol nanofibers. J Appl Polym Sci, 2007, 106(2): 863–867CrossRefGoogle Scholar
  229. 229.
    Wang Y, Hsieh Y-L. Enzyme immobilization to ultra-fine cellulose fibers via amphiphilic polyethylene glycol spacers. J Polym Sci Part A: Polym Chem, 2004, 42(17): 4289–4299CrossRefGoogle Scholar
  230. 230.
    Huang X-J, Xu Z-K, Wan L-S, et al. Electro-spun nano fibers modified with phospholipid moieties for enzyme immobilization. Macromol Rapid Commun, 2006, 27(16): 1341–1345CrossRefGoogle Scholar
  231. 231.
    Wang Z-G, Wang J-Q, Xu Z-K. Immobilization of lipase from Candida rugosa on electrospun polysulfone nanofibrous membranes by adsorption. J Mol Catal B: Enzym, 2006, 42(1–2): 45–51CrossRefGoogle Scholar
  232. 232.
    Ursula E. Spichiger-Keller. Chemical Sensors & Biosensors for Medical and Biological Applications. Weinheim: Wily-VCH, 1998. 377–378Google Scholar
  233. 233.
    Wang X, Lee S-H, Drew C, et al. Electrospun nanofibrous membranes for optical sensing. Polym Mater Sci Eng, 2001, 85: 617–618Google Scholar
  234. 234.
    Wang X, Drew C, Lee S-H, et al. Electrospun nanofibrous membrane for highly sensitive optical sensors. Nano Lett, 2002, 2(11): 1273–1275CrossRefGoogle Scholar
  235. 235.
    Wang X, Lee S-H, Ku B-C, et al. Synthesis and electrospinning of a novel fluorescent polymer PMMA-PM for quenching-based optical sensing. J Macromol Sci Part A Pure Appl Chem, 2002, A39(10): 1241–1249CrossRefGoogle Scholar
  236. 236.
    Wang X, Kim Y-G, Drew C, et al. Electrostatic assembly of conjugated polymer thin layers on electrospun nanofibrous membranes for biosensors. Nano Lett, 2004, 4(2): 331–334CrossRefGoogle Scholar
  237. 237.
    Tao S, Li G, Yin J. Fluorescent nanofibrous membranes for trace detection of TNT vapor. J Mater Chem, 2007, 17(26): 2730–2736CrossRefGoogle Scholar
  238. 238.
    Yoon J, Chae S K, Kim J-M. Colorimetric sensors for volatile organic compounds (VOCs) based on conjugated polymer-embedded electrospun fibers. J Am Chem Soc, 2007, 129(11): 3038–3039PubMedCrossRefGoogle Scholar
  239. 239.
    Ding B, Yamazaki M, Shiratori S. Electrospun fibrous polyacrylic acid membrane-based gas sensors. Sens Actuat B: Chem, 2005, B106(1): 477–483CrossRefGoogle Scholar
  240. 240.
    Luoh R, Hahn H T. Electrospun nanocomposite fiber mats as gas sensors. Comp Sci Tech, 2006, 66(14): 2436–2441CrossRefGoogle Scholar
  241. 241.
    Gouma P I. Nanostructured polymorphic oxides for advanced chemosensors. Rev Adv Mater Sci, 2003, 5(2): 147–154Google Scholar
  242. 242.
    Wang G, Ji Y, Huang X, et al. Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing. J Phys Chem B, 2006, 110(47): 23777–23782PubMedCrossRefGoogle Scholar
  243. 243.
    Sawicka K M, Prasad A K, Gouma P I. Metal oxide nanowires for use in chemical sensing applications. Sens Lett, 2005, 3(1): 31–35CrossRefGoogle Scholar
  244. 244.
    Kim I-D, Rothschild A, Lee B H, et al. Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. Nano Lett, 2006, 6(9): 2009–2013PubMedCrossRefGoogle Scholar
  245. 245.
    Yang M, Xie T F, Peng L, et al. Fabrication and photoelectric oxygen sensing characteristics of electrospun Co doped ZnO nanofibres. Appl Phys A Mater Sci Proc, 2007, 89(2): 427–430CrossRefGoogle Scholar
  246. 246.
    Aussawasathien D, Dong J H, Dai L. Electrospun polymer nanofiber sensors. Synth Metals, 2005, 154(1–3): 37–40CrossRefGoogle Scholar
  247. 247.
    Bishop A, Gouma P. Leuco-emeraldine based polyaniline—poly-vinyl-pyrrolidone electrospun composites and bio-composites: A preliminary study of sensing behavior. Rev Adv Mater Sci, 2005, 10(3): 209–214Google Scholar
  248. 248.
    Bishop-Haynes A, Gouma P. Electrospun polyaniline composites for NO2 detection. Mater Manufact Proc, 2007, 22(6): 764–767CrossRefGoogle Scholar
  249. 249.
    Pinto N J, Gonzalez R, Johnson A T, et al. Electrospun hybrid organic/inorganic semiconductor Schottky nanodiode. Appl Phys Lett, 2006, 89(3): 033505Google Scholar
  250. 250.
    Kessick R, Tepper G. Electrospun polymer composite fiber arrays for the detection and identification of volatile organic compounds. Sens Actuat B: Chem, 2006, B117(1): 205–210CrossRefGoogle Scholar
  251. 251.
    Laxminarayana K, Jalili N. Functional nanotube-based textiles: Pathway to next generation fabrics with enhanced sensing capabilities. Text Res J, 2005, 75(9): 670–680CrossRefGoogle Scholar
  252. 252.
    Sawicka K, Gouma P, Simon S. Electrospun biocomposite nanofibers for urea biosensing. Sens Actuat B: Chem, 2005, B108(1–2): 585–588CrossRefGoogle Scholar
  253. 253.
    Patel A C, Li S, Yuan J-M, et al. In situ encapsulation of horseradish peroxidase in electrospun porous silica fibers for potential biosensor applications. Nano Lett, 2006, 6(5): 1042–1046PubMedCrossRefGoogle Scholar
  254. 254.
    Ren G, Xu X, Liu Q, et al. Electrospun poly(vinyl alcohol)/glucose oxidase biocomposite membranes for biosensor applications. React Funct Polym, 2006, 66(12): 1559–1564CrossRefGoogle Scholar
  255. 255.
    Manesh K M, Santhosh P, Gopalan A, et al. Electrospun poly(vinylidene fluoride)/poly(aminophenylboronic acid) composite nanofibrous membrane as a novel glucose sensor. Anal Biochem, 2007, 360(2): 189–195PubMedCrossRefGoogle Scholar
  256. 256.
    Arora P, Zhang Z. Battery Separators. Chem Rev, 2004, 104(10): 4419–4462PubMedCrossRefGoogle Scholar
  257. 257.
    Choi S W, Jo S M, Lee W S, et al. An electrospun poly(vinylidene fluoride) nanofibrous membrane and its battery applications. Adv Mater, 2003, 15(23): 2027–2032CrossRefGoogle Scholar
  258. 258.
    Kim J R, Choi S W, Jo S M, et al. Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries. Electrochim Acta, 2004, 50(1): 69–75CrossRefGoogle Scholar
  259. 259.
    Choi S-S, Lee Y S, Joo C W, et al. Electrospun PVDF nanofiber web as polymer electrolyte or separator. Electrochim Acta, 2004, 50(2–3): 339–343CrossRefGoogle Scholar
  260. 260.
    Gao K, Hu X, Dai C, et al. Crystal structures of electrospun PVDF membranes and its separator application for rechargeable lithium metal cells. Mater Sci Eng B: Solid-State Mater Adv Tech, 2006, 131(1–3): 100–105CrossRefGoogle Scholar
  261. 261.
    Kim J R, Choi S W, Jo S M, et al. Characterization and properties of P(VdF-HFP)-based fibrous polymer electrolyte membrane prepared by electrospinning. J Electrochem Soc, 2005, 152(2): A295–A300CrossRefGoogle Scholar
  262. 262.
    Li X, Cheruvally G, Kim J-K, et al. Polymer electrolytes based on an electrospun poly(vinylidene fluoride-co-hexafluoropropylene) membrane for lithium batteries. J Power Sources, 2007, 167(2): 491–498CrossRefGoogle Scholar
  263. 263.
    Kim J-K, Cheruvally G, Choi J-W, et al. Rechargeable organic radical battery with electrospun, fibrous membrane-based polymer electrolyte. J Electrochem Soc, 2007, 154(9): A839–A843CrossRefGoogle Scholar
  264. 264.
    Choi S W, Kim J R, Jo S M, et al. Electrochemical and spectroscopic properties of electrospun PAN-based fibrous polymer electrolytes. J Electrochem Soc, 2005, 152(5): A989–A995CrossRefGoogle Scholar
  265. 265.
    Ahn Y C, Park S K, G.T.K, et al. Development of high efficiency nanofilters made of nanofibers. Curr Appl Phys, 2006, 6(6): 1030–1035CrossRefGoogle Scholar
  266. 266.
    Fan Q, Whittingham M S. Electrospun manganese oxide nanofibers as anodes for lithium-ion batteries. Electrochem Solid-State Lett, 2007, 10(3): A48–A51CrossRefGoogle Scholar
  267. 267.
    Gu Y, Chen D, Jiao X, et al. LiCoO2-MgO coaxial fibers: Co-electrospun fabrication, characterization and electrochemical properties. J Mater Chem, 2007, 17(18): 1769–1776CrossRefGoogle Scholar
  268. 268.
    Lu H-W, Zeng W, Li Y-S, et al. Fabrication and electrochemical properties of three-dimensional net architectures of anatase TiO2 and spinel Li4Ti5O12 nanofibers. J Power Sources, 2007, 164(2): 874–879CrossRefGoogle Scholar
  269. 269.
    Song M Y, Kim D K, Ihn K J, et al. Electrospun TiO2 electrodes for dye-sensitized solar cells. Nanotechnology, 2004, 15(12): 1861–1865CrossRefGoogle Scholar
  270. 270.
    Song M Y, Kim D K, Jo S M, et al. Enhancement of the photocurrent generation in dye-sensitized solar cell based on electrospun TiO2 electrode by surface treatment. Synth Metals, 2005, 155(3): 635–638CrossRefGoogle Scholar
  271. 271.
    Jo S M, Song M Y, Ahn Y R, et al. Nanofibril formation of electrospun TiO2 fibers and its application to dye-sensitized solar cells. J Macromol Sci Part A Pure Appl Chem, 2005, A42(11): 1529–1540Google Scholar
  272. 272.
    Song M Y, Kim D K, Ihn K J, et al. New application of electrospun TiO2 electrode to solid-state dye-sensitized solar cells. Synth Metals, 2005, 153(1–3): 77–80CrossRefGoogle Scholar
  273. 273.
    Dillon A C, Jones K M, Bekkedahl T A, et al. Storage of hydrogen in single-walled carbon nanotubes. Nature, 1997, 386(6623): 377–379CrossRefGoogle Scholar
  274. 274.
    Kim D-K, Park S H, Kim B C, et al. Electrospun polyacrylonitrile-based carbon nanofibers and their hydrogen storage. Macromol Res, 2005, 13(6): 521–528CrossRefGoogle Scholar
  275. 275.
    Hong S E, Kim D-K, Jo S M, et al. Graphite nanofibers prepared from catalytic graphitization of electrospun poly(vinylidene fluoride) nanofibers and their hydrogen storage capacity. Catal Today, 2007, 120(3–4): 413–419CrossRefGoogle Scholar
  276. 276.
    Bergshoef M M, Vancso G J. Transparent nanocomposites with ultrathin, electrospun nylon-4,6 fiber reinforcement. Adv Mater, 1999, 11(16): 1362–1365CrossRefGoogle Scholar
  277. 277.
    Kim J-S, Eneker D H. Mechanical properties of composites using ultrafine electrospun fibers. Polym Comp, 1999, 20(1): 124–131CrossRefGoogle Scholar
  278. 278.
    Fong H. Electrospun nylon 6 nanofiber reinforced BIS-GMA/TEGDMA dental restorative composite resins. Polymer, 2004, 45(7): 2427–2432CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.Centre for Material and Fibre InnovationDeakin UniversityGeelongAustralia

Personalised recommendations