Chinese Science Bulletin

, Volume 53, Issue 21, pp 3379–3386 | Cite as

Carbonaceous particles in Muztagh Ata ice core, West Kunlun Mountains, China

  • XianQin Liu
  • BaiQing Xu
  • TanDong Yao
  • NingLian Wang
  • GuangJian Wu
Articles/Atmospheric Sciences


Carbonaceous particles concentrations of OC and EC are determined using a two-step gas chromatography system in Muztagh Ata ice core covering the time period of 1955–2000. Over the period represented by the core, OC and EC concentrations appear to have changed significantly, varied in the range of 17.7–216.7 and 6.5–124.6, and averaged 61.8, 32.9 ng·g−1, respectively. The average concentration of EC in Muztagh Ata ice core is much lower than that in an Alpine ice core record (100–300 ng·g−1) during the same period, but it is a factor of 14 in Greenland ice core (2.3 ng·g−1), this may induce a strong impact on the snow albedo in the last 46 years in our study area. Observations indicate two periods with obviously high deposition concentrations (1955–1965 and 1974–1989) and two periods with low concentrations (1966–1973 and 1990–1995), as well as a recent increasing trend. By comparing EC and SO42− concentration variations and deciphering OC/EC ratios recorded in the same ice core, we can judge roughly that the carbonaceous particles deposited in Muztagh Ata ice core were attributed to fossil fuel combustion sources.


Muztagh Ata ice core carbonaceous particles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Etheridge D M, Pearman G I, Fraser P J. Changes in tropospheric methane between 1841 and 1978 from high accumulation-rate Antarctic ice core. Tellus, 1992, 44B: 282–294Google Scholar
  2. 2.
    Etheridge D M, Steele L P, Francey R J, et al. Atmospheric methane between 1000 A.D. and present: Evidence of anthropogenic emissions and climatic variability. J Geophys Res, 1998, 103(D13): 15979–15993CrossRefGoogle Scholar
  3. 3.
    Lavanchy V M H, Gaggeler H W, Schotterer U, et al. Historical record of carbonaceous particle concentrations from a European High-alpine glacier (Colle Gnifetti, Switzerland). J Geophys Res, 1999, 104(D17): 21227–21236CrossRefGoogle Scholar
  4. 4.
    Novakov T, Ramanathan V, Hansen J E, et al. Large historical changes of fossil-fuel black carbon aerosols. Geophys Res Lett, 2003, 30(6), 1324, doi:10.1029/2002GL016345CrossRefGoogle Scholar
  5. 5.
    Wang C. A modeling study on the climate impacts of black carbon aerosols. J Geophys Res, 2004, 109, D03106, doi:10.1029/2003JD004084CrossRefGoogle Scholar
  6. 6.
    Jacobson M Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosol. Nature, 2001, 409: 695–697PubMedCrossRefGoogle Scholar
  7. 7.
    Hansen J E, Sato M. Trends of measured climate forcing agents. Proc Natl Acad Sci USA, 2001, 98(26): 14778–14783PubMedCrossRefGoogle Scholar
  8. 8.
    Birch M E, Cary R A. Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci Technol, 1996, 25(3): 221–241CrossRefGoogle Scholar
  9. 9.
    Chow J C, Watson J G, Pritchett L C, et al. The DRI Thermal/Optical reflectance carbon analysis system: Description, evaluation, and applications in U.S. air quality studies. Atmos Environ, 1993, 27A(8): 1185–1201Google Scholar
  10. 10.
    Jacobson M Z. Climate response of fossil fuel and biofuel soot, accounting for soot’s feedback to snow and sea ice albedo and emissivity. J Geophys Res, 2004, 109, D21201, doi:10.1029/2004JD004945CrossRefGoogle Scholar
  11. 11.
    Seinfeld J H, Pandis S N. Atmospheric chemistry and physics: From Air Pollution to Climate Change. New York: John Wiley & Sons, 1998Google Scholar
  12. 12.
    Lohmann U, Feichter J. Global indirect aerosol effects: a review. Atmos Chem Phys, 2005, 5(3): 715–737CrossRefGoogle Scholar
  13. 13.
    Hansen J E, Sato M, Ruedy R. Radiative forcing and climate response. J Geophys Res, 1997, 102(D6): 6831–6864CrossRefGoogle Scholar
  14. 14.
    Johnson B T. The semi-direct aerosol effect. Doctor Dissertation. Reading: University of Reading, 2003Google Scholar
  15. 15.
    Hansen J E, Nazarenko L. Soot climate forcing via snow and ice albedos. Proc Natl Acad Sci USA, 2004, 101(2): 423–428PubMedCrossRefGoogle Scholar
  16. 16.
    Barnett T P, Adam J C, Lettenmaier D P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 2005, 438: 303–309PubMedCrossRefGoogle Scholar
  17. 17.
    Mayol-Bracero O L, Kirchstetter T W, Novakov T. Carbonaceous aerosols over the Indian Ocean during the Indian Ocean Experiment (INDOEX): Chemical characterization, optical properties, and probable sources. J Geophys Res, 2002, 107(D19), 8030, doi:10.1029/2000JD000039CrossRefGoogle Scholar
  18. 18.
    Penner J E. Carbonaceous aerosols influencing atmospheric radiation: black and organic carbon. In: Charlson R J, Heintzengerg J, eds. Aerosol Forcing of Climate: Report of the Dahlem Workshop on Aerosol Forcing of Climate, 1994 April 24–29, Berlin. Chichester: John Wiley & Sons, 1995. 91–108Google Scholar
  19. 19.
    IPCC. Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007Google Scholar
  20. 20.
    IPCC. Climate Change 2001: The physical science basis. Contributions of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2001Google Scholar
  21. 21.
    Hansen J, Bond T, Cairns B, et al. Carbonaceous aerosols in the industrial era. Eos Trans AGU, 2004, 85(25): 241–244CrossRefGoogle Scholar
  22. 22.
    Warren S G, Clarke A D. Soot in the atmospheric and snow surface of Antarctica. J Geophys Res, 1990, 95(D2): 1811–1816CrossRefGoogle Scholar
  23. 23.
    McConnell J R, Edwards R, Kok G L et al. 20th century industrial black carbon emission altered Arctic climate forcing. Science, 2007, 317: 1381–1384PubMedCrossRefGoogle Scholar
  24. 24.
    Xu B Q, Yao T D, Liu X Q, et al. Elemental and organic carbon measurements with a two-step heating-gas chromatography system in snow samples from the Tibetan Plateau. Ann Glaciol, 2006, 43(1): 257–262CrossRefGoogle Scholar
  25. 25.
    Liu X Q, Wang N L, Yao T D, et al. Carbonaceous aerosols in snow and ice in the Tibetan plateau. Earth Sci Front (in Chinese), 2006, 13(5): 335–341Google Scholar
  26. 26.
    Lavanchy V M H, Gaggeler H W, Nyeki S, et al. Elemental carbon (EC) and black carbon (BC) measurements with a thermal method and an aethalometer at the high-alpine research station Jungfraujoch. Atmos Environ, 1999, 33(17): 2759–2769CrossRefGoogle Scholar
  27. 27.
    Szidat S, Jenk T M, Gaggeler H W, et al. THEODORE, a two-step heating system for the EC/OC determination of radiocarbon (14C) in the environment. Nucl Instrum Methods Phys Res B, 2004, 223–224: 829–836CrossRefGoogle Scholar
  28. 28.
    Clausen H B, Hammer C U. The Laki and Tambora eruptions as revealed in Greenland ice cores from 11 locations. Ann Glaciol, 1988, 10: 16–22Google Scholar
  29. 29.
    Warren S G, Wiscombe W J. A model for the spectral albeo of snow. II: Snow containing atmospheric aerosols. J Atmos Sci, 1980, 37: 2734–2745CrossRefGoogle Scholar
  30. 30.
    Li J. Organochlorine pesticides in snow-ice, Mt. Eversest region and Muztagata Glacier, China. Dissertation for the Doctoral Degree (in Chinese). Beijing: Peking University, 2005. 90–92Google Scholar
  31. 31.
    Flanner M G, Zender C S, Randerson J T, et al. Present-day climate forcing and response from black carbon in snow. J Geophys Res, 2007, 112, D11202, doi:10.1029/2006JD008003CrossRefGoogle Scholar
  32. 32.
    Turpin B J, Huntzicker J J. Secondary formation of organic aerosol in the Los Angeles Basin: A descriptive analysis of organic and elemental carbon concentrations. Atmos Environ, 1991, 25A(2): 207–215Google Scholar
  33. 33.
    Chen Z L, Ge S. Measurement and analysis for atmospheric aerosol particulates in Beijing. Res Environ Sci (in Chinese), 1994, 7(3): 1–9Google Scholar
  34. 34.
    Gillies J A, Gertler A W. Comparison and evaluation of chemically speciated mobile source PM2.5 particulate matter profiles. J Air Waste Manage Assoc, 2000, 50(8): 1459–1480Google Scholar
  35. 35.
    Gillies J A, Gertler A W, Sagebiel J C, et al. On-road particulate matter (PM2.5 and PM10) emissions in the Sepulveda Tunnel, Los Angeles, California. Environ Sci Technol, 2001, 35(6): 1054–1063PubMedCrossRefGoogle Scholar
  36. 36.
    Turpin B J, Huntzicker J J. Identification of secondary organic aerosol episodes and quantification of primary and secondary organic aerosol concentrations during SCAQS. Atmos Environ, 1995, 29(23): 3527–3544CrossRefGoogle Scholar
  37. 37.
    Chow J C, Watson J G, Lu Z, et al. Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX. Atmos Environ, 1996, 30(12): 2079–2112CrossRefGoogle Scholar
  38. 38.
    Wolff G T, Groblicki P J, Cadle S H, et al. Particulate carbon at various locations in the United States. In: Wolff G T, Klimisch R L, eds. Particulate Carbon: Atmospherc Life Cycle. New York: Plenum Press, 1982. 297–315Google Scholar
  39. 39.
    Andreae M O, Merlet P. Emission of trace gases and aerosols from biomass burning. Global Biogeochem Cycles, 2001, 15(4): 955–966CrossRefGoogle Scholar
  40. 40.
    Duan K, Thompson L G, Yao T, et al. A 1000 year history of atmospheric sulfate concentrations in southern Asia as recorded by a Himalayan ice core. Geophy Res Lett, 2007, 34, L01810, doi:10.1029/2006GL027456CrossRefGoogle Scholar
  41. 41.
    Smith S J, Pitcher H, Wigley T M L. Global and regional anthropogenic sulfur dioxide emissions. Glob Planet Change, 2001, 29(1–2): 99–119CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  • XianQin Liu
    • 1
    • 3
  • BaiQing Xu
    • 2
  • TanDong Yao
    • 2
  • NingLian Wang
    • 1
  • GuangJian Wu
    • 2
  1. 1.State Key Laboratory of Cryospheric Science, Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouChina
  2. 2.Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
  3. 3.Graduate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations