Chinese Science Bulletin

, Volume 53, Issue 10, pp 1565–1573 | Cite as

In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite

  • LieWen Xie
  • YanBin Zhang
  • HuiHuang Zhang
  • JingFeng Sun
  • FuYuan Wu
Articles Geochemistry

Abstract

This paper describes a combined method of simultaneously measuring U-Pb and Lu-Hf isotopes as well as trace elements in Phalaborwa baddeleyite and 91500, GJ-1, TEMORA-1 and SK10-2 zircons by means of Neptune MC-ICPMS and Agilent Q-ICPMS connected to a 193 nm excimer laser ablation system. Material ablated by laser was carried in different proportions into Q-ICPMS for U-Pb isotopic and trace elemental and MC-ICPMS for Lu-Hf isotopic compositions. Experiments indicate that different proportions of ablated material for the Q-ICPMS and MC-ICPMS (6:4, 5:5 and 4:6 respectively) do not show any bias for the zircon/baddeleyite U-Pb age, Lu-Hf isotope and trace elemental compositions within analytical errors. Using 40–60 μm spot size, the obtained U-Pb ages of Phalaborwa baddeleyite, 91500, GJ-1, TEMORA and SK10-2 zircons are 2065±15 (2σ, n=20), 1063±6 (2σ, n=19), 613±6 (2σ, n=20), 416±5 (2σ, n=20) and 32.6±0.5 (2σ, n=20) Ma, respectively. The 176Hf/177Hf ratios are 0.281231±24 (2SD, n=20), 0.282310±35 (2SD, n=19), 0.282028±34 (2SD, n=20), 0.282687±34 (2SD, n=20) and 0.282752±53 (2SD, n=20), respectively. The obtained trace elemental compositions are identical to the reference values. Therefore, this kind of technique makes it possible to simultaneously obtain the U-Pb age, Lu-Hf isotopes and trace elemental compositions of zircon and baddeleyite, which could be an important tool in solving problems in earth sciences.

Keywords

U-Pb age Lu-Hf isotopes trace elements zircon in situ measurement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ireland T R, Williams I S. Considerations in zircon geochronology by SIMS. In: Hanchar J M, Hoskin P W O, eds. Zircon. Rev Mineral Geochem, 2003, 53: 215–241Google Scholar
  2. 2.
    Kosler J, Sylvester P J. Present trends and the future of zircon in geochronology: laser ablation ICPMS. In: Hanchar J M and Hoskin P W O (eds.), Zircon. Rev Mineral Geochem, 2003, 53: 243–275Google Scholar
  3. 3.
    Kinny P D, Maas R. Lu-Hf and Sm-Nd isotope systems in zircon. In: Hanchar J M and Hoskin P W O (eds.), Zircon. Rev Mineral Geochem, 2003, 53: 327–341Google Scholar
  4. 4.
    Hawkesworth C J, Kemp A I S. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem Geol, 2006, 226: 144–162CrossRefGoogle Scholar
  5. 5.
    Zheng Y F, Wu Y B, Zhao Z F, et al. Metamorphic effect on zircon Lu-Hf and U-Pb isotope systems in ultrahigh-pressure eclogite-facies metagranite and metabasite. Earth Planet Sci Lett, 2005, 240: 378–400CrossRefGoogle Scholar
  6. 6.
    Yang J H, Wu F Y, Wilde S A, et al. Tracing magma mixing in granite genesis: in situ U-Pb dating and Hf-isotope analysis of zircons. Contrib Mineral Petrol, 2007, 153: 177–190CrossRefGoogle Scholar
  7. 7.
    Zheng Y F, Zhao Z F, Wu Y B, et al. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen. Chem Geol, 2006, 231: 135–158CrossRefGoogle Scholar
  8. 8.
    Zheng Y F, Zhang S B, Zhao Z F, et al. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: implications for growth and reworking of continental crust. Lithos, 2007, 96: 127–150CrossRefGoogle Scholar
  9. 9.
    Zhang S B, Zheng Y F, Wu Y B, et al. Zircon isotope evidence for ≥3.5 Ga continental crust in the Yangtze craton of China. Precambr Res, 2006, 146: 16–34CrossRefGoogle Scholar
  10. 10.
    Zhang S B, Zheng Y F, Wu Y B, et al. Zircon U-Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Archean crust in South China. Earth Planet Sci Lett, 2006, 252: 56–71CrossRefGoogle Scholar
  11. 11.
    Wu F Y, Yang J H, Wilde S A, et al. Detrital zircon U-Pb and Hf isotopic constraints on the crustal evolution of North Korea. Precambr Res, 2007, 159: 155–177CrossRefGoogle Scholar
  12. 12.
    Yang J H, Wu F Y, Shao J A, et al. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China. Earth Planet Sci Lett, 2006, 246: 336–352CrossRefGoogle Scholar
  13. 13.
    Wu F Y, Clift P D, Yang J H. Zircon Hf isotopic constraints on the sources of the Indus Molasse, Ladakh Himalaya, India. Tectonics, 26, TC2014, doi: 10.1029/2006TC002051Google Scholar
  14. 14.
    Xu P, Wu F Y, Xie L W, et al. Hf isotopic compositions of the standard zircons for U-Pb dating. Chin Sci Bull, 2004, 49: 1642–1648CrossRefGoogle Scholar
  15. 15.
    Wu F Y, Yang Y H, Xie L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem Geol, 2006, 234: 105–126CrossRefGoogle Scholar
  16. 16.
    Liu X M, Gao S, Diwu C R, et al. Simultaneous in-situ determination of U-Pb age and trace elements in zircon by LA-ICP-MS in 20 μm spot size. Chin Sci Bull, 2007, 52: 1257–1264CrossRefGoogle Scholar
  17. 17.
    Ludwig K R. ISOPLOT 3.0-A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 2003, (4): 70Google Scholar
  18. 18.
    Machado N, Simonetti A. U-Pb dating and Hf isotopic composition of zircons by laser ablation-MC-ICP-MS. In: Sylvester P, ed. Laser-Ablation-ICPMS in the Earth Sciences: Principles and Applications. Short Course, Mineral Assoc Can, 2001, 29: 121–146Google Scholar
  19. 19.
    Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser ablation quadrupole and multiple collector ICP-MS. Chem Geol, 2007, in pressGoogle Scholar
  20. 20.
    Machado N, Gauthier G. Determination of 207Pb/206Pb ages on zircon and monazite by laser-ablation ICPMS and application to a study of sedimentary provenance and metamorphism in southeastern Brazil. Geochim Cosmochim Acta, 1996, 60: 5063–5073CrossRefGoogle Scholar
  21. 21.
    Xia X P, Sun M, Zhao G C, et al. Spot zircon U-Pb isotope analysis by ICP-MS coupled with a frequency quintupled (213 nm) Nd-YAG laser system. Geochem J, 2004, 38: 191–200Google Scholar
  22. 22.
    Bouman C, Schwieters J, Cocherie A, et al. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS (LA-MIC-ICP-MS) Finnigan NEPTUNE. Thermal Electron Corporation Application Note, 2005, (30021): 6Google Scholar
  23. 23.
    Eriksson S C. Age of carbonatite and phoscorite magmatism of the Phalaborwa complex (South Africa). Isotope Geosci, 1984, 2: 291–299Google Scholar
  24. 24.
    Heaman L M, LeCheminant A N. Paragenesis and U-Pb systeatics of baddeleyite (ZrO2). Chem Geol, 1993, 110: 95–126CrossRefGoogle Scholar
  25. 25.
    Reischmann T. Precise U/Pb age determination with baddeleyite (ZrO2), a case study from the Phalaborwa igneous complex, South Africa. S Afr J Geol, 1995, 98: 1–4Google Scholar
  26. 26.
    Reischmann T, Brugmann G E, Jochum K P, et al. Trace element and isotopic composition of baddeleyite. Mineral Petrol, 1995, 53: 155–164CrossRefGoogle Scholar
  27. 27.
    Horn I, Rudnick R L, McDonough W F. Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS: application to U-Pb geochronology. Chem Geol, 2000, 167: 405–425CrossRefGoogle Scholar
  28. 28.
    Wingate M T D, Compston W. Crystal orientation effects during ion microprobe U-Pb analysis of baddeleyite. Chem Geol, 2000, 168: 75–97CrossRefGoogle Scholar
  29. 29.
    Hirata T. Determination of Zr isotopic composition and U-Pb ages for terrestrial and extraterrestrial Zr-bearing minerals using laser ablation-inductively coupled plasma mass spectrometry: implications for Nb-Zr isotopic systematics. Chem Geol, 2001, 176: 323–342CrossRefGoogle Scholar
  30. 30.
    Scherer E, Munker C, Mezger K. Calibration of the lutetium-hafnium clock. Science, 2001, 293: 683–687PubMedCrossRefGoogle Scholar
  31. 31.
    French J E, Heaman L M, Chacko T. Feasibility of chemical U-Th-total Pb baddeleyite dating by electron microprobe. Chem Geol, 2002, 188: 85–104CrossRefGoogle Scholar
  32. 32.
    Horn I, McDonough W F, Rudnick R L. In-situ hafnium, uranium/lead and lead/lead isotopic analyses of zircons and baddeleyite by laser ablation MC-ICP-MS. Abstract of Ninth Goldschimdt Conference, Harvard University: Massachusetts, 1999, 7646Google Scholar
  33. 33.
    Rubatto D, Scambelluri M. U-Pb dating of magmatic zircon and metamorphic baddeleyite in the Ligurian eclogites (Voltri Massif, Western Alps). Contrib Mineral Petrol, 2003, 146: 341–355CrossRefGoogle Scholar
  34. 34.
    Wiedenbeck M, Alle P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element, and REE analyses. Geostand Newslett, 1995, 19: 1–23CrossRefGoogle Scholar
  35. 35.
    Lopez R, Cameron K L, Jones NW. Evidence for Paleoproterozoic, Grenvillian and Pan-African age Gondwana crust beneath northeastern Mexico. Precambrian Res, 2001, 107: 195–214CrossRefGoogle Scholar
  36. 36.
    Paquette J L, Pin C. A new minimaturized extraction chromatography method for precise U-Pb zircon geochronology. Chem Geol, 2001, 176: 311–319CrossRefGoogle Scholar
  37. 37.
    Amelin Y V, Zaitsev A N. Precise geochronology of phoscorites and carbonatites: the critical role of U-series disequilibrium in age interpretations. Geochim Cosmochim Acta, 2002, 66: 2399–2419CrossRefGoogle Scholar
  38. 38.
    Chen F, Siebel W, Satir M. Zircon U-Pb and Pb-isotope fractionation during stepwise HF acid leaching and geochronological implications. Chem Geol, 2002, 191: 155–164CrossRefGoogle Scholar
  39. 39.
    Nebel-Jacobsen Y, Scherer E E, Munker K, et al. Separation of U, Pb, Lu, and Hf from single zircons for combined U-Pb dating and Hf isotope measurements by TIMS and MC-ICPMS. Chem Geol, 2005, 220: 105–120CrossRefGoogle Scholar
  40. 40.
    Whitehouse M J, Platt J P. Dating high-grade metamorphism—constraints from rare-earth elements in zircon and garnet. Contrib Mineral Petrol, 2003, 145: 61–74Google Scholar
  41. 41.
    Yuan H L, Wu F Y, Gao S, et al. Determination of U-Pb age and rare earth element concentrations of zircons from Cenozoic untrusions in northeastern China by laser ablation ICP-MS. Chin Sci Bull, 2003, 48: 2411–2421Google Scholar
  42. 42.
    Yuan H L, Gao S, Liu X M, et al. Precise U-Pb age and trace element determinations of zircon by laser ablation—inductively coupled plasma mass spectrometry. Geostand Geoanal Res, 2004, 28: 353–370CrossRefGoogle Scholar
  43. 43.
    Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to in situ U-Pb zircon geochronology. Chem Geol, 2004, 211: 47–69CrossRefGoogle Scholar
  44. 44.
    Elhlou S, Belousova E, Griffin W L, et al. Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochim Cosmochim Acta, 2006, 70(supp.): A158CrossRefGoogle Scholar
  45. 45.
    Zeh A, Gerdes A, Klemd R, et al. Archaean to Proterozoic Crustal Evolution in the Central Zone of the Limpopo Belt (South Africa-Botswana): Constraints from Combined U-Pb and Lu-Hf Isotope Analyses of Zircon. J Petrol, 2007, 48: 1605–1639CrossRefGoogle Scholar
  46. 46.
    Black L P, Kamo S L, Allen C M, et al. TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology. Chem Geol, 2003, 200: 155–170CrossRefGoogle Scholar
  47. 47.
    Black L P, Kamo S L, Williams I S, et al. The application of SHRIMP to Phanerozoic geochronology: a critical appraisal of four zircon standards. Chem Geol, 2003, 200: 171–188CrossRefGoogle Scholar
  48. 48.
    Woodhead J, Hergt J, Shelley M, et al. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chem Geol, 2004, 209: 121–135CrossRefGoogle Scholar
  49. 49.
    Qi C S, Li X H, Liang X R, et al. High-precision measurement of Hf isotopic reference values for the U-Pb geochronology standard zircons by multi-collector ICP-MS. J Chin Mass Spectro Soc (in Chinese with English abstract), 2005, 26: 149–154Google Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  • LieWen Xie
    • 1
  • YanBin Zhang
    • 1
  • HuiHuang Zhang
    • 1
  • JingFeng Sun
    • 1
  • FuYuan Wu
    • 1
  1. 1.State Key Laboratory of Lithospheric Evolution, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina

Personalised recommendations