Chinese Science Bulletin

, Volume 53, Issue 8, pp 1175–1184 | Cite as

The Escherichia coli O157:H7 DNA detection on a gold nanoparticle-enhanced piezoelectric biosensor

  • LiJiang Wang
  • QingShan Wei
  • ChunSheng Wu
  • ZhaoYing Hu
  • Jian Ji
  • Ping Wang
Articles Chemical Engineering

Abstract

This paper presents development of a quartz crystal microbalance (QCM) biosensor for real-time detection of E. coli O157:H7 DNA based on nanogold particles amplification. Many inner Au nanoparticles were immobilized onto the thioled surface of the Au electrode, then more specific thiolated single-stranded DNA (ssDNA) probes could be fixed through Au-SH bonding. The hybridization was induced by exposing the ssDNA probe to the complementary target DNA of E. coli O157:H7 gene eaeA, then resulted in a mass change and corresponding frequency shifts (Δf) of the QCM. The outer avidin-coated Au nanoparticles could combine with the target DNA to increase the mass. The electrochemical techniques, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were adopted to manifest and character each step. The target DNA corresponding to 2.0×103 colony forming unit (CFU)/mL E. coli O157:H7 cells can be detected by this biosensor, so it is practical to develop a sensitive and effective QCM biosensor for pathogenic bacteria detection based on specific DNA analysis. The piezoelectric biosensing system has potential for further applications, such as food safety and environment monitoring, and this approach lays the groundwork for incorporating the method into an integrated system for in-field bacteria detection.

Key words

piezoelectric biosensor gold nanoparticle E. coli O157:H7 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Su XL, Li Y. A QCM immunosensor for Salmonella detection with simultaneous measurements of resonant frequency and motional resistance. Biosens Bioelectron, 2005, 21: 840–848PubMedCrossRefGoogle Scholar
  2. 2.
    Rangel JM, Sparling PH, Crowe C, et al. Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982–2002. Emerg Infect Dis, 2005, 11: 603–609PubMedGoogle Scholar
  3. 3.
    Tuttle J, Gomez T, Doyle M P, et al. Lessons from a large outbreak of Escherichia coli O157:H7 infections: Insights into the infectious dose and method of widespread contamination of hamburger patties. Epidemiol Infect, 1999, 122: 185–192PubMedCrossRefGoogle Scholar
  4. 4.
    Berkenpas E, Millard P, Pereira da C M. Detection of Escherichia coli O157:H7 with langasite pure shear horizontal surface acoustic wave sensors. Biosens Bioelectron, 2006, 21: 2255–2262PubMedCrossRefGoogle Scholar
  5. 5.
    Centers for Disease Control and Prevention (CDC), 2006. Ongoing Multistate Outbreak of Escherichia coli serotype O157:H7 Infections Associated with Consumption of Fresh Spinach—United States, September 2006. Available at: http://0-www.cdc.gov.mill1.sjlibrary.org/mmwr/preview/mmwrhtml/mm55d926a1.htm.
  6. 6.
    Brooks B W, Devenish J, Lutze-Wallace C L, et al. Evaluation of a monoclonal antibody-based enzyme-linked immunosorbent assay for detection of Campylobacter fetus in bovine preputial washing and vaginal mucus samples. Vet Microbiol, 2004, 103: 77–84PubMedCrossRefGoogle Scholar
  7. 7.
    Cui S, Schroeder C M, Zhang D Y, et al. Rapid sample preparation method for PCR-based detection of Escherichia coli O157:H7 in ground beef. J Appl Microbiol, 2003, 95: 129–134PubMedCrossRefGoogle Scholar
  8. 8.
    Fode-Vaughan KA, Maki JS, Benson JA, et al. Direct PCR detection of Escherichia coli O157:H7. Lett Appl Microbiol, 2003, 37: 239–243PubMedCrossRefGoogle Scholar
  9. 9.
    Sunwoo H H, Wang W W, Sim J S. Detection of Escherichia coli O157:H7 using chicken immunoglobulin Y. Immunol Lett, 2006, 106: 191–193PubMedCrossRefGoogle Scholar
  10. 10.
    Hahm B K, Bhunia A K. Effect of environmental stresses on antibody-based detection of Escherichia coli O157:H7, Salmonella enterica serotype Enteritidis and Listeria monocytogenes. J Appl Microbiol, 2006, 100: 1017–1027PubMedCrossRefGoogle Scholar
  11. 11.
    Yang L, Li Y. Simultaneous detection of Escherichia coli O157:H7 and Salmonella Typhimurium using quantum dots as fluorescence labels. Analyst, 2006, 131: 394–401PubMedCrossRefGoogle Scholar
  12. 12.
    Huelseweh B, Ehricht R, Marschall H J. A simple and rapid protein array based method for the simultaneous detection of biowarfare agents. Proteomics, 2006, 6: 2972–2981PubMedCrossRefGoogle Scholar
  13. 13.
    Zhao ZJ, Liu XM. Preparation of monoclonal antibody and development of enzyme-linked immunosorbent assay specific for Escherichia coli O157 in foods. Biomed Environ Sci, 2005, 18: 254–259PubMedGoogle Scholar
  14. 14.
    Lazcka O, Del Campo F J, Munoz F X. Pathogen detection: A perspective of traditional methods and biosensors. Biosens Bioelectron, 2007, 22: 1205–1217PubMedCrossRefGoogle Scholar
  15. 15.
    Liu Y, Li Y. An antibody-immobilized capillary column as a bioseparator/bioreactor for detection of E. coli O157:H7 with absorbance measurement. Anal Chem, 2001, 73: 5180–5183PubMedCrossRefGoogle Scholar
  16. 16.
    Demarco D R, Lim D V. Detection of E. coli O157:H7 in 10-and 25-gram ground beef samples with evanescent-wave biosensor with silica and polystyrene waveguides. J Food Prot, 2002, 65: 596–602PubMedGoogle Scholar
  17. 17.
    Liu Y, Ye J, Li Y. Rapid detection of E. coli O157:H7 in ground beef, chicken carcass, and lettuce samples using an immunomagnetic chemiluminescence fiber optic biosensor. J Food Prot, 2003, 66: 512–517PubMedGoogle Scholar
  18. 18.
    Berqwerff A A, Knapen van F. Surface plasmon resonance biosensors for detection of pathogenic microorganisms: Strategies to secure food and environmental safety. J AOAC Int, 2006, 89: 826–831Google Scholar
  19. 19.
    Taylor A D, Ladd J, Yu Q, et al. Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor. Biosens Bioelectron, 2006, 22:752–758PubMedCrossRefGoogle Scholar
  20. 20.
    Subramanian A, Irudayaraj J, Ryan T. A mixed self-assembled monolayer-based surface plasmon immunosensor for detection of E. coli O157:H7. Biosens Bioelectron, 2006, 21: 998–1006.PubMedCrossRefGoogle Scholar
  21. 21.
    Ruan C, Yang L, Li Y. Immunobiosensor chips for detection of E. coli O157:H7 using electrochemical impedance spectroscopy. Anal Chem, 2002, 7:4814–4820CrossRefGoogle Scholar
  22. 22.
    Zhang D, Chen S, Qin L, et al. The novel immunobiosensors for detection of Escherichia coli O157:H7 using electrochemical impedance spectroscopy. Conf Proc IEEE Eng Med Biol Soc, 2005, 7: 7111–7113PubMedGoogle Scholar
  23. 23.
    Su X L, Li Y. A self-assembled monolayer-based piezoelectric immunosensor for rapid detection of Escherichia coli O157:H7. Biosens Bioelectron, 2004, 19: 563–574PubMedCrossRefGoogle Scholar
  24. 24.
    Mann T L, Krull U J. The application of ultrasound as a rapid method to provide DNA fragments suitable for detection by DNA biosensors. Biosens Bioelectron, 2004, 20: 945–955PubMedCrossRefGoogle Scholar
  25. 25.
    Deisingh A K, Thompson M. Sequences of E. coli O157:H7 detected by a PCR-acousticwave sensor combination. Analyst, 2001, 126: 2153–2158PubMedCrossRefGoogle Scholar
  26. 26.
    Wu V C H, Chen S H, Lin C S. Real-time detection of Escherichia coli O157:H7 sequences using a circulating-flow system of quartz crystal microbalance. Biosens and Bioelectron, 2007, 22: 2967–2975CrossRefGoogle Scholar
  27. 27.
    Willner I, Patolsky F, Weizmann Y, et al. Amplified detection of single-base mismatches in DNA using microgravimetric quartz-crystal-microbalance transduction. Talanta, 2002, 56: 847–856CrossRefGoogle Scholar
  28. 28.
    Liu T, Tang J, Han M, et al. A novel microgravimetric DNA sensor with high sensitivity. Biochem Biophys Res Commun, 2003, 304: 98–100PubMedCrossRefGoogle Scholar
  29. 29.
    Mao X, Yang L, Su X L, Li Y. A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157:H7. Biosens Bioelectron, 2006, 21: 1178–1185PubMedCrossRefGoogle Scholar
  30. 30.
    Tan WB, Zhang Y. Surface modification of gold and quantum dot nanoparticles with chitosan for bioapplications. Biomed Mater Res A, 2005, 75: 56–62CrossRefGoogle Scholar
  31. 31.
    Kerman K, Vestergaard M, Nagatani N, et al. Electrochemical genosensor based on peptide nucleic acid-mediated PCR and asymmetric PCR techniques: Electrostatic interactions with a metal cation. Anal Chem, 2006, 78: 2182–2189PubMedCrossRefGoogle Scholar
  32. 32.
    Liu T, Tang J, Han M, et al. The enhancement effect of gold nanoparticles on the QCM DNA detection. Chin Sci Bull, 2003, 48(9): 873–875CrossRefGoogle Scholar
  33. 33.
    Ouerghi O, Touhami A, Jaffrezic-Renault N, et al. Impedimetric immunosensor using avidin-biotin for antibody immobilization. Bioelectrochemistry, 2002, 56: 131–133PubMedCrossRefGoogle Scholar
  34. 34.
    Gooding J J, Chou A, Mearns F J, et al. The ion gating effect: Using a change in flexibility to allow label free electrochemical detection of DNA hybridization. Chem Commun, 2003, 15: 1938–1939CrossRefGoogle Scholar

Copyright information

© Science in China Press 2008

Authors and Affiliations

  • LiJiang Wang
    • 1
  • QingShan Wei
    • 2
  • ChunSheng Wu
    • 1
  • ZhaoYing Hu
    • 1
  • Jian Ji
    • 2
  • Ping Wang
    • 1
  1. 1.Biosensor National Special Laboratory and Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical EngineeringZhejiang UniversityHangzhouChina
  2. 2.Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of EducationZhejiang UniversityHangzhouChina

Personalised recommendations