Chinese Science Bulletin

, Volume 53, Issue 8, pp 1165–1170

Preparation of monodisperse, superparamagnetic, luminescent, and multifunctional PGMA microspheres with amino-groups

  • WeiCai Wang
  • Qi Zhang
  • BingBo Zhang
  • DeNa Li
  • XiaoQing Dong
  • Lei Zhang
  • Jin Chang
Articles Polymer Chemistry

Abstract

Micron-sized, monodisperse, superparamagnetic, luminescent composite poly(glycidyl methacrylate) (PGMA) microspheres with functional amino-groups were successfully synthesized in this study. The process of preparation was as follows: preparation of monodisperse poly(glycidyl methacrylate) microspheres by dispersion polymerization method; modification of poly(glycidyl methacrylate) microspheres with ethylene diamine to form amino-groups; impregnation of iron ions (Fe2+ and Fe3+) inside the microspheres and subsequently precipitating them with ammonium hydroxide to form magnetite (Fe3O4) nanoparticles within the polymer microspheres; infusion of CdSe/CdS core-shell quantum dots (QDs) into magnetic polymer microspheres. Scanning electron microscopy (SEM) was used to characterize surface morphology and size distribution of composite microspheres. The average size of microspheres was 1.42 μm with a size variation of 3.8%. The composite microspheres were bright enough and easily observed using a conventional fluorescence microscope. The composite microspheres were easily separated from solution by magnetic decantation using a permanent magnet. The new multifunctional composite microspheres are promising to be used in a variety of bioanalytical assays involving luminescence detection and magnetic separation.

Key words

luminescence magnetism glycidyl methacrylate quantum dots multifunction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang D, He J, Rosenzweig N, et al. Superparamagnetic Fe2O3 beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation. Nano Letters, 2004, 4: 409–413CrossRefGoogle Scholar
  2. 2.
    Xie H, Zuo C, Liu Y, et al. Cell-targeting multifunctional nanospheres with both fluorescence and magnetism. Small, 2005, 1: 506–509PubMedCrossRefGoogle Scholar
  3. 3.
    Gaponik N, Radtchenko I L, Sukhorukov G B, et al. Luminescent polymer microcapsules addressable by a magnetic field. Langmuir, 2004, 20: 1449–1452PubMedCrossRefGoogle Scholar
  4. 4.
    Tan W B, Zhang Y. Multifunctional quantum-dot-based magnetic chiosan nanobeads. Adv Mater, 2005, 17: 2375–2380CrossRefGoogle Scholar
  5. 5.
    Mulvaney S P, Mattoussi H, Whitman L J. Incorporating fluorescent dyes and quantum dots into magnetic microbeads for immunoassays. Biotechniques, 2004, 36: 602–609PubMedGoogle Scholar
  6. 6.
    Salgueiriño-Maceira V, Correa-Duarte M A, Spasova M, et al. Composite silica spheres with magnetic and luminescent. Adv Funct Mater, 2006, 16: 509–514CrossRefGoogle Scholar
  7. 7.
    Hong X, Li J, Wang M, et al. Fabrication of magnetic luminescent nanocomposites by a layer-by-layer self-assembly approach. Chem Mater, 2004, 16: 4022–4027CrossRefGoogle Scholar
  8. 8.
    Gu H, Zheng R, Zhang X, et al. Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: A conjugate of quantum dot and magnetic nanoparticles. J Am Chem Soc, 2004, 126: 5664–5665PubMedCrossRefGoogle Scholar
  9. 9.
    You X, He R, Gao F, et al. Hydrophilic high-luminescent magnetic nanocomposites. Nanotechnology, 2007, 18: 035701Google Scholar
  10. 10.
    Guo J, Yang W, Wang C, et al. Poly(N-isopropylacrylamide)-coated luminescent-magnetic silica microspheres preparation, characterization, and biomedical applications. Chem Mater, 2006, 18: 5554–5562CrossRefGoogle Scholar
  11. 11.
    Müller-Schulte D, Schmitz-Rode T, Borm P. Ultra-fast synthesis of magnetic and luminescent silica beads for versatile bioanalytical applications. J Magnet Magnet Mater, 2005, 293: 135–143CrossRefGoogle Scholar
  12. 12.
    Selvan S T, Patra P K, Ang C Y, et al. Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angew Chem, 2007, 119: 2500–2504CrossRefGoogle Scholar
  13. 13.
    Peng Z A, Peng X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc, 2001, 123: 183–184PubMedCrossRefGoogle Scholar
  14. 14.
    Han M, Gao X, Su J Z, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol, 2001, 19: 631–635PubMedCrossRefGoogle Scholar
  15. 15.
    Kalal J, Švec F, Maroušek V. Reacions of epoxide groups of glycidyl methacrylate copolymers. J Polym Sci: Polymer Symposia, 1974, 47: 155–166CrossRefGoogle Scholar
  16. 16.
    Horák D. Magnetic polyglycidylmethacrylate microspheres by dispersion polymerization. J Polym Sci A: Polym Chem, 2001, 39: 3707–3715CrossRefGoogle Scholar
  17. 17.
    Lee Y, Rho J, Jung B. Preparation of magnetic ion-exchange resins by the suspension polymerization of styrene with magnetite. J Appl Polym Sci, 2003, 89: 2058–2067CrossRefGoogle Scholar
  18. 18.
    Liu X, Guan Y, Ma Z, et al. Surface modification and characterization of magnetic polymer nanospheres prepared by miniemulsion polymerization. Langmuir, 2004, 20: 10278–10282PubMedCrossRefGoogle Scholar
  19. 19.
    Xie G, Zhang Q, Luo Z, et al. Preparation of magnetic P(St/BA/MAA) microspheres. Chin Polym Bull (in Chinese), 2002, 3: 314–318Google Scholar

Copyright information

© Science in China Press 2008

Authors and Affiliations

  • WeiCai Wang
    • 1
  • Qi Zhang
    • 1
  • BingBo Zhang
    • 1
  • DeNa Li
    • 1
  • XiaoQing Dong
    • 1
  • Lei Zhang
    • 1
  • Jin Chang
    • 1
  1. 1.Institute of Nanobiotechnology, School of Materials Science & EngineeringTianjin UniversityTianjinChina

Personalised recommendations