Advertisement

Chinese Science Bulletin

, Volume 52, Issue 21, pp 2925–2929 | Cite as

Sinorhizobium meliloti nifA gene exerts a pleiotropic effect on nodulation through the enhanced plant defense response

  • Chen XiaoTao 
  • Zou HuaSong 
  • Yao ZhenHua 
  • Cheng HaiPing 
  • Dai XiaoMi 
  • Zhu JiaBi 
  • Yu GuanQiao Email author
Articles Microbiology

Abstract

Sinorhizobium meliloti nifA gene is required for the expression of a bunch of nif and fix genes. Here, we report its pleiotropic effects on the nodule formation. Compared with wild type strain, nifA mutant significantly reduced nodule suppression rate in split-root system. The plants inoculated with mutant strain produced lower amount of daidzein and less necrotic cells on their roots. In addition, the defense genes failed to be evoked by nifA mutant at the early nodulation stage. These findings indicated that host defense response was one of the mechanisms mediated by nifA gene to regulate nodule formation during symbiosis. Even though nifA mutant could increase the number of nodules in host plant, it synthesized lower Nod factors than wild type. This suggested that nifA gene mediated multiple and diverse instances in nodulation formation.

Keywords

nifA hypersensitive response nodulation Nod factor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cohn J, Day R B, Stacey G. Legume nodule organgenesis. Trends Plant Sci, 1998, 3: 105–110CrossRefGoogle Scholar
  2. 2.
    Hirsch A M. Developmental biology of legume nodulation. New Phytol, 1992, 122: 211–237CrossRefGoogle Scholar
  3. 3.
    Halverson L J, Stacey G. Signal exchange in plant-microbe interaction. Microbiol Rev, 1986, 50: 193–225Google Scholar
  4. 4.
    Stougaard J. Regulators and regulation of legume root nodule development. Plant Physiol, 2000, 124: 531–540CrossRefGoogle Scholar
  5. 5.
    Perret X, Staehelin C, Broughton W J. Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev, 2000, 64: 180–201CrossRefGoogle Scholar
  6. 6.
    Fisher R F, Long S R. Rhizobium-plant signal exchange. Nature, 1992, 357: 655–660CrossRefGoogle Scholar
  7. 7.
    Dénarié J, Debellé F, Promé J C. Rhizobium lipo-chitooligosaccharide nodulation factors: Signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem, 1996, 65: 503–535CrossRefGoogle Scholar
  8. 8.
    Oka-Kira E, Kawaguchi M. Long-distance signaling to control root nodule number. Curr Opin Plant Biol, 2006, 9: 496–502CrossRefGoogle Scholar
  9. 9.
    Dart P J. Infection and development of leguminous nodules. In: Hardy R W F, Silver W S, eds. A Treatise on Dinitrogen Fixation. New York: Wiley, 1977. 367–472Google Scholar
  10. 10.
    Dart P J, Mercer F V. The legume rhizosphere. Arch Microbiol, 1964, 47: 344–378Google Scholar
  11. 11.
    Malik N S A, Calvert H E, Bauer W D. Nitrate induced regulation of nodule formation in soybean. Plant Physiol, 1987, 84: 266–271Google Scholar
  12. 12.
    Hirsch A M, Smith C A. Effects of Rhizobium meliloti nif and fix mutants on alfalfa root nodule development. J Bacteriol, 1987, 169: 1137–1146Google Scholar
  13. 13.
    Olsson J E, Nakao P, Greshoff P M. Lack of systemic suppression of nodulation in split-root systems of supernodulating soybean (Glycine max[L] Merr.) mutants. Plant Physiol, 1989, 90: 1347–1352CrossRefGoogle Scholar
  14. 14.
    Heath M C. Hypersensitive response-related death. Plant Mol Biol, 2000, 44: 321–334CrossRefGoogle Scholar
  15. 15.
    Beers E P, McDowell J M. Regulation and execution of programmed cell death in response to pathogens, stress and developmental cues. Curr Opin Plant Biol, 2001, 4: 561–567CrossRefGoogle Scholar
  16. 16.
    Vasse J, de Billy F, Truchet G. Abortion of infection during the Rhizobium meliloti: alfalfa symbiotic interaction is accompanied by a hypersensitive reaction. Plant J, 1993, 4: 555–566CrossRefGoogle Scholar
  17. 17.
    Fischer H M. Genetic regulation of nitrogen fixation in Rhizobia. Microbiol Rev, 1994, 58: 352–386Google Scholar
  18. 18.
    Wu T, Zhu J B, Yu G Q, et al. Inhibition of nodule development by multicopy promoters of Rhizobiun meliloti nif/fix genes. Sci China Ser C-Life Sci, 1995, 38: 1108–1116Google Scholar
  19. 19.
    Meade H M, Long S R, Ruvkun G B, et al. Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transpon Tn5 mutagenesis. J Bacteriol, 1982, 149: 114–122Google Scholar
  20. 20.
    Yang C T, Yu G Q, Shen S C, et al. Functional difference between Sinorhizobium meliloti NifA and Entrobacter cloacae NifA. Sci China Ser C-Life Sci, 2003, 33: 398–404Google Scholar
  21. 21.
    Jording D, Sharma P K, Schmidt R, et al. Regulatory aspects of the C4-dicarboxylate transport in Rhizobium meliloti: Transcriptional activation and dependence on effective symbiosis. J Plant Physiol, 1992, 141: 18–27Google Scholar
  22. 22.
    Pellock B J, Cheng H P, Walker G C. Alfalfa root nodule invasion effeiciency is dependent on Sinorhizobium meliloti polysaccharides. J Bacteriol, 2000, 182: 4310–4318CrossRefGoogle Scholar
  23. 23.
    Nichaus K, Kapp D, Pühler A. Plant defense and delayed infection of alfalfa pseudonodules induced by an exopolysaccharide (EPS I)-deficient Rhizobium meliloti mutant. Plant, 1993, 190: 415–425Google Scholar
  24. 24.
    Zhao J P, Dai X M, Xu L, et al. Extracopy nifA enhances the nodulation efficiency of Sinorhizobium fredii. Chi Sci Bull, 2001, 46: 1984–1987CrossRefGoogle Scholar
  25. 25.
    Tian Z X, Zou H S, Li J, et al. Transcriptome analysis of Sinorhizobium meliloti nifA mutant nodule bacteria. Chi Sci Bull, 2006, 51: 2079–2086CrossRefGoogle Scholar
  26. 26.
    Savouré, Sallau, C, El-Turk J, et al. Distinct response of Medicago suspension cultures and roots to Nod factors and chitin oligomers in the elicitation of defense-related response. Plant J, 1997, 11: 277–287CrossRefGoogle Scholar
  27. 27.
    Inohara N, Ogura Y, Nunez G. Nods: A family of cytosolic proteins that regulate the host response to pathogens. Curr Opin Microbiol, 2002, 5: 76–80CrossRefGoogle Scholar
  28. 28.
    Sun J, Cardoza V, Michell D M, et al. Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation. Plant J, 2006, 46: 961–970CrossRefGoogle Scholar
  29. 29.
    Kunkel B N, Brooks D M. Cross talk between signaling pathways in pathways in pathogen defense. Curr Opin Plant Biol, 2002, 5: 325–331CrossRefGoogle Scholar
  30. 30.
    Leigh J A, Signer E R, Walker G C. Exopolysaccharide deficient mutants of Rhizobium meliloti that form ineffective nodules. Proc Natl Acad Sci USA, 1985, 82: 6221–6235CrossRefGoogle Scholar
  31. 31.
    Dunlap J, Minami E, Bhagwat A A, Keister D L, Stacey G. Nodule development induced by mutants of Bradyrhizobium japonicum defective in cyclic β-glucan synthesis. Mol Plant Microbe Interact 1996, 7: 546–555Google Scholar
  32. 32.
    Dow M, Newman M A, von Roepenack E. The induction and modulation of plant defense responses by bacterial lipopolysaccharides. Annu Rev Phytopathol, 2000, 38: 241–261CrossRefGoogle Scholar
  33. 33.
    Deavours B E, Dixon R A. Metablic engineering of isoflavonoid biosynthesis in alfalfa. Plant Physiol, 2005, 138: 2245–2259CrossRefGoogle Scholar

Copyright information

© Science in China Press 2007

Authors and Affiliations

  • Chen XiaoTao 
    • 1
    • 2
  • Zou HuaSong 
    • 1
  • Yao ZhenHua 
    • 1
    • 2
  • Cheng HaiPing 
    • 3
  • Dai XiaoMi 
    • 1
  • Zhu JiaBi 
    • 1
  • Yu GuanQiao 
    • 1
    Email author
  1. 1.National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina
  3. 3.Biological Sciences Department, Lehman Collegethe City University of New YorkBronxUSA

Personalised recommendations