Chinese Science Bulletin

, Volume 52, Issue 18, pp 2522–2531 | Cite as

Studies of new EST-SSRs derived from Gossypium barbadense

  • Zhang YanXin 
  • Lin ZhongXu 
  • Li Wu 
  • Tu LiLi 
  • Nie YiChun 
  • Zhang XianLong 
Articles Geneticss


Existing cotton EST-SSR markers are mostly derived from Gossypium arboreum and Gossypium hirsutum, but EST-SSR markers from Gossypium barbadense are scarce. One hundred and nineteen EST-SSRs were developed based on 98 unique ESTs from a cDNA library constructed in our laboratory using developing fibers from G. barbadense cv. Pima3–79. Among the SSRs, trinucleotide AAG appeared at a high frequency of 11.76%. 36 accessions (consisting of 13 diploids of the A genome, 11 diploids of the D genome and 12 allotetraploids of the AD genome) were employed to test new EST-SSRs. 76 EST-SSRs were successfully amplified, and 313 polymorphic fragments were yielded, with an average of 4.11 fragments per primer pair. The PIC ranged from 0.17 to 0.95 with an average of 0.53. Based on Jaccard’s genetic similarity coefficient, these 36 accessions were clustered into three groups. 21 EST-SSRs exhibited polymorphisms in BC1 population ((Emian22 × Pima3–79) × Emian22), 24 polymorphic loci were generated, while 22 of the 24 polymorphic loci were integrated with our interspecific BC1 backbone genetic linkage map, and anchored in 12 chromosomes. This study effectively proved that EST-SSRs from G. barbadense are valuable for genetic diversity analysis and genetic mapping.


Gossypium barbadense expressed sequence tag (EST) simple sequence repeat (SSR) genetic diversity genetic linkage map 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hof J V, Saha S. Cotton fibers can undergo cell division. Am J Bot, 1997, 84(9): 1231–1235CrossRefGoogle Scholar
  2. 2.
    Kim H J, Triplett B A. Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol, 2001, 127: 1361–1366CrossRefGoogle Scholar
  3. 3.
    Shen X L, Guo W Z, Zhu X F. Molecular mapping of QTLs for fiber qualities in three diverse lines in Upland cotton using SSR markers. Mol Breed, 2005, 15: 169–181CrossRefGoogle Scholar
  4. 4.
    Qamaruz Z F, Michael F F, Parker J S, et al. Molecular techniques employed in the assessment of genetic diversity: A review focusing on orchid conservation. Lindleyana, 1998, 13: 259–283Google Scholar
  5. 5.
    Powell W, Machray G C, Provan J. Polymorphism revealed by simple sequence repeats. Trends Plant Sci, 1996, 1: 215–222Google Scholar
  6. 6.
    Tautz D, Schotterer C. Simple sequences. Curr Opin Genet, 1994, 4: 832–837CrossRefGoogle Scholar
  7. 7.
    Gupta P K, Balyan H S, Sharma P C, et al. Microsatellites in plants: a new class of molecular markers. Curr Sci, 1996, 70: 45–54Google Scholar
  8. 8.
    Weber J L, May P E. Abundance class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet, 1989, 44: 388–396Google Scholar
  9. 9.
    Combes M C, Andrzejewski S, Anthony F, et al. Characterization of microsatellite loci in Coffea arabica and related coffee species. Mol Ecol, 2000, 8: 1171–1193Google Scholar
  10. 10.
    Saha S, Karaca M, Jenkins J N, et al. Simple sequence repeats as useful resources to study transcribed genes of cotton. Euphytica, 2003, 130: 355–364CrossRefGoogle Scholar
  11. 11.
    Qureshi S N, Saha S, Kantety R V, et al. EST-SSR: A new class of genetic markers in cotton. J Cotton Sci, 2004, 8: 112–123Google Scholar
  12. 12.
    Chee P W, Rong J, Williams C D, et al. EST derived PCR-based markers for functional gene homologues in cotton. Genome, 2004, 47: 449–462CrossRefGoogle Scholar
  13. 13.
    Han Z G, Guo W Z, Song X, et al. Genetic mapping of EST derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol Genet Genomics, 2004, 272: 308–327CrossRefGoogle Scholar
  14. 14.
    Han Z G, Wang C B, Song X L, et al. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theor Appl Genet, 2006, 112: 430–439CrossRefGoogle Scholar
  15. 15.
    Park Y H, Alabady M S, Ulloa M, et al. Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred (RIL) cotton population. Mol Genet Genomics, 2005, 274: 428–441CrossRefGoogle Scholar
  16. 16.
    Taliercio E, Allen R D, Essenberg M, et al. Analysis of ESTs from multiple Gossypium hirsutum tissues and identification of SSRs. Genome, 2006, 49: 306–319CrossRefGoogle Scholar
  17. 17.
    Paterson A H, Brubaker C, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993, 11: 122–127Google Scholar
  18. 18.
    Lin Z X, He D H, Zhang X L, et al. Linkage map construction and mapping QTLs for cotton fiber quality using SRAP, SSR and RAPD. Plant Breed, 2005, 124: 180–187CrossRefGoogle Scholar
  19. 19.
    Botstein D, White R L, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980, 32: 314–331Google Scholar
  20. 20.
    Anderson J A, Churchill G A, Autrique J E, et al. Optimizing parental selection for genetic linkage maps. Genome, 1993, 36: 181–186CrossRefGoogle Scholar
  21. 21.
    Rohlf F J. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, Version 2.1, User Guide. New York: Exeter Software, 2000Google Scholar
  22. 22.
    Sokal R R, Michener C D. A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull, 1958, 28: 1409–1438Google Scholar
  23. 23.
    Sneath, P H, Sokal R R. Numerical Taxonomy: The Principal and Practice of Numerical Classification. San Francisco: W. H. Freeman and Company, 1973Google Scholar
  24. 24.
    Lander E S, Green P, Abrahamson J, et al. MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181CrossRefGoogle Scholar
  25. 25.
    Kosambi D D. The estimation of map distances from recombination values. Ann Eugen, 1994, 12: 172–175Google Scholar
  26. 26.
    Chin E C L. Maize simple repetitive DNA sequences: Abundance and allele variation. Genome, 1996, 156: 847–854Google Scholar
  27. 27.
    Temnykh S, Park W D, Ayres N, et al. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet, 2000, 100: 697–712CrossRefGoogle Scholar
  28. 28.
    Morgante M, Hanafey M, Powell W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nature Genet, 2002, 30: 194–200CrossRefGoogle Scholar
  29. 29.
    Thiel T, Michalek W, Varshney R K, et al. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet, 2003, 106: 411–422Google Scholar
  30. 30.
    Fryxell P A. A revised taxonomic interpretation of Gossypium L. (Makvaceae). Rheedea, 1992, 2(2): 108–165Google Scholar
  31. 31.
    Wang C B, Guo W Z, Cai C P, et al. Characterization, development and exploitation of EST-derived microsatellites in Gossypium raimondii Ulbrich. Chin Sci Bull, 2006, 51(5): 557–561CrossRefGoogle Scholar
  32. 32.
    Gao L F, Jing R L, Huo N X, et al. One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat. Theor Appl Genet, 2004, 108: 1392–1400CrossRefGoogle Scholar
  33. 33.
    Varshney R K, Graner A, Sorrells M E. Genic microsatellite markers in plants: Features and applications. Trends Biotechnol, 2005, 23: 48–55CrossRefGoogle Scholar
  34. 34.
    Frelichowski J E, Palmer M B, Main D, et al. Cotton genome mapping with new microsatellites from Acala ‘Maxxa’ BAC-ends. Mol Gen Genomics, 2006, 275: 479–491CrossRefGoogle Scholar
  35. 35.
    Blair M W, Giraldo M C, Buendía H F, et al. Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet, 2006, 113: 100–109CrossRefGoogle Scholar
  36. 36.
    Rong J, Bowers J E, Schulze S R, et al. Comparative genomics of Gossypium and Arabidopsis: Unraveling the consequences of both ancient and recent polyploidy. Genome Res, 2005, 15: 1198–1210CrossRefGoogle Scholar
  37. 37.
    Scott K D, Eggler P, Seaton G, et al. Analysis of SSRs derived from grapes EST. Theor Appl Genet, 2000, 100: 723–726CrossRefGoogle Scholar
  38. 38.
    Eujayl I, Sorrells M E, Wolters P, et al. Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet, 2002, 104: 399–407CrossRefGoogle Scholar
  39. 39.
    Kantety R V, Rota M L, Matthews D E, et al. Data mining for simple sequence repeats in expressed sequence tags from barely, maize, rice, sorghum and wheat. Plant Mol Biol, 2002, 48: 501–510CrossRefGoogle Scholar

Copyright information

© Science in China Press 2007

Authors and Affiliations

  • Zhang YanXin 
    • 1
  • Lin ZhongXu 
    • 1
  • Li Wu 
    • 1
  • Tu LiLi 
    • 1
  • Nie YiChun 
    • 1
  • Zhang XianLong 
    • 1
  1. 1.National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina

Personalised recommendations