Chinese Science Bulletin

, Volume 52, Issue 18, pp 2551–2558 | Cite as

A new method to calculate monthly CO emissions using MOPITT satellite data

  • Lin YunPing 
  • Zhao ChunSheng 
  • Peng Li 
  • Fang YuanYuan 
Articles Atmospheric Sciences

Abstract

A new method is developed to calculate monthly CO emission data using MOZART modeled and MOPITT observed CO data in 2004. New CO emission data were obtained with budget analysis of the processes controlling CO concentration such as surface emission, transport, chemical transform and dry deposition. MOPITT data were used to constrain the model simulation. New CO emission data agree well with Horowitz’s emissions in the spatial distributions. Horowitz’s emissions are found to underestimate CO emissions significantly in the industrial areas of Asia and North America, where high CO emissions are mainly due to the anthropogenic activities. New CO emissions can better reflect the more recent CO actual emissions than Horowitz’s.

Keywords

CO emission MOPITT MOZART 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Olivier J G J, Bloos J P J, Berdowski J J M, et al. A 1990 global emission inventory of anthropogenic sources of carbon monoxide on 1°×1° developed in the framework of EDGAR/GEIA. Chemosphere: Global Change Science 1, 1999, 1–17CrossRefGoogle Scholar
  2. 2.
    Bai N B. Estimation of emissions of CO2, SO2 and NOx on 1°×1°grid in China. In: Zhou X J, ed. Atmospheric Ozone Variation and Its Effect on Climate and Environment over China (in Chinese). Beijing: China Meteorological Press, 1996. 145–150Google Scholar
  3. 3.
    Bergamaschi P, Hein R, Heimann M, et al. Inverse modeling of the global CO cycle: 1. Inversion of CO mixing ratios. J Geophys Res, 2000, 105: 1909–1927CrossRefGoogle Scholar
  4. 4.
    Kasibhatla P, Arellano A, Logan J, et al. Top-down estimate of a large source of atmospheric carbon monoxide associated with fuel combustion in Asia. Geophys Res Lett, 2002, 29(19): 1900, doi:10.1029/2002GL015581CrossRefGoogle Scholar
  5. 5.
    Pétron G, Granier C, Khattatov B, et al. Inverse modeling of carbon monoxide surface emissions using CMDL network observations. J Geophys Res, 2002, 107(D24): 4761, doi:10.1029/2001JD001305CrossRefGoogle Scholar
  6. 6.
    Pétron G, Granier C, Khattatov B, et al. Monthly CO surface sources inventory based on the 2000–2001 MOPITT satellite data. Geophys Res Lett, 2004, 31: L21107, doi:10.1029/2004GL020560CrossRefGoogle Scholar
  7. 7.
    Arellano A F J, Kasibhatla P S, Giglio L, et al. Top-down estimates of global CO sources using MOPITT measurements. Geophys Res Lett, 2004, 31: L01104, doi:10.1029/2003GL018609.CrossRefGoogle Scholar
  8. 8.
    Qin Y, Zhao C S. The Fundamental of Atmospheric Chemistry (in Chinese), Bejing: China Meteorological Press, 2003. 168–170Google Scholar
  9. 9.
    Tie X, Brasseur G P, Zhao C S, et al. Chemical characterization of air pollution in eastern China and the eastern United States. Atmos Environ, 2006, 40: 2607–2625CrossRefGoogle Scholar
  10. 10.
    Houghton J T, Ding Y, Griggs D J, et al. Climate Change 2001: The Scientific Basis. Intergovernmental Panel on Climate Change (IPCC) Working Group I Third Assessment Report. New York: Cambridge University Press, 2001Google Scholar
  11. 11.
    Ma J, van Aardenne J A. Impact of different emission inventories on simulated tropospheric ozone over China: A regional chemical transport model evaluation. Atmos Chem Phys, 2004, 4: 877–887CrossRefGoogle Scholar
  12. 12.
    Peng L, Zhao C S, Lin Y P, et al. Analysis of carbon monoxide budget in North China. Chemosphere, 2006, doi:10.1016/j.chemosphere.2006.09.055Google Scholar
  13. 13.
    Fang Y Y, Zhao C S, Li C C, Analysis of the distribution of carbon monoxide from MOPITT over East Asia in 2002, Chin J Atm Sci, 2005, 29(4): 407–416Google Scholar
  14. 14.
    Fang Y Y. Satellite analysis on the distribution and transport of carbon monoxide. Master’s Dissertation (in Chinese), Beijing: Department of Atmospheric Science, School of Physics, Peking University, 2005. 37–50Google Scholar
  15. 15.
    Drummond J R, Mand G S. The Measurement of Pollution in the Troposphere (MOPITT) instrument: overall performance and calibration performance. J Atmos Oceanic Technol, 1996, 13: 312–320CrossRefGoogle Scholar
  16. 16.
    Deeter M N, Emmons L K, Francis G L, et al. Operational carbon monoxide retrieval algorithm and selected results for the MOPITT instrument. J Geophys Res, 2003, 108, doi: 10.1029/2002JD003186Google Scholar
  17. 17.
    Wang J X, Deeter M N, Gille J C, et al. Retrieval of tropospheric carbon monoxide profiles from MOPITT: algorithm description and retrieval simulation. J Geophys Res, 1999, 56: 219–232Google Scholar
  18. 18.
    Horowitz L W, Walters S, Mauzerall D, et al. A global simulation of tropospheric ozone and related tracers: description and evaluation of MOZART, version 2. J Geophys Res, 2003, 108: 4784, doi:10.1029/2002JD00285CrossRefGoogle Scholar

Copyright information

© Science in China Press 2007

Authors and Affiliations

  • Lin YunPing 
    • 1
  • Zhao ChunSheng 
    • 1
  • Peng Li 
    • 1
  • Fang YuanYuan 
    • 2
  1. 1.Department of Atmospheric Science, School of PhysicsPeking UniversityBeijingChina
  2. 2.Atmospheric and Oceanic Sciences ProgramPrinceton UniversityNew JersyUSA

Personalised recommendations