Chinese Science Bulletin

, Volume 52, Issue 16, pp 2203–2209

Expression patterns of the rice class I metallothionein gene family in response to lead stress in rice seedlings and functional complementation of its members in lead-sensitive yeast cells

  • Xu YuFeng 
  • Zhou GongKe 
  • Zhou Lu 
  • Li YiQin 
  • Liu JinYuan 
Articles Plant Physiology


Metallothioneins (MTs) are a group of low molecular mass and cysteine-rich proteins that can chelate heavy-metal ions. In this paper, Northern blot analysis was used to investigate the influence of lead stress on the expression patterns of 10 rice class I MT genes (OsMT-Is) in rice seedlings. With the exception of OsMT-I-3b, the data demonstrate dynamic changes of 9 OsMT-I transcripts in response to Pb2+ treatment in rice seedling roots. Of these genes, transcription of OsMT-I-1a, OsMT-I-1b, OsMT-I-2c, OsMT-I-4a, OSMT-I-4b and OsMT-I-4c increased significantly, while transcription of OsMT-I-2a and OsMT-I-3a increased marginally. In contrast, the expression of OsMT-I-2b was inhibited. Pb2+ induced the expression of 6 OsMT-I genes in seedling shoots, but had no obvious effects on the expression of OsMT-I-1a, OsMT-I-1b, OsMT-I-4a and OsMT-I-4b. All the 10 OsMT-Is had enhanced lead tolerance when heterologously expressed in lead-sensitive yeast mutant cells. These results provide an expression profile of the rice MT gene family in response to Pb2+ stress in rice seedlings and demonstrate increased lead tolerance in sensitive yeast mutant cells expressing OsMT-Is. This study lays a foundation for further analysis of the role of the rice MT gene family in respond to Pb2+ stress.


rice metallothionein gene family Pb2+ induced expression yeast tolerance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Laraque D, Trasande L. Lead poisoning: Successes and 21st century challenges. Pediatr Rev, 2005, 26(12): 435–443Google Scholar
  2. 2.
    Clemens S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 2006, 88(11): 1707–1719CrossRefGoogle Scholar
  3. 3.
    Hall J L. Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot, 2002, 53(366): 1–11CrossRefGoogle Scholar
  4. 4.
    Coyle P, Philcox J C, Carey L C, et al. Metallothionein: The multipurpose protein. Cell Mol Life Sci, 2002, 59(4): 627–647CrossRefGoogle Scholar
  5. 5.
    Li X, Hao S J, Liu Y, et al. Study on the form and stability of α and β domain of metallothionein binding to lead (II). J Hygiene Res, 2001, 30: 198–200Google Scholar
  6. 6.
    Lane B G, Kajioka R, Kennedy T D. The wheat germ Ec protein is a zinc containing metallothionein. Biochem Cell Biol, 1987, 65: 1001–1005CrossRefGoogle Scholar
  7. 7.
    Murphy A, Zhou J, Goldsbrough P B, et al. Purification and immunological identification of metallothioneins 1 and 2 from Arabidopsis thaliana. Plant Physiol, 1997, 113(4): 1293–301CrossRefGoogle Scholar
  8. 8.
    Giordani T, Natali L, Maserti B E, et al. Characterization and expression of DNA sequences encoding putative type-II metallothioneins in the seagrass Posidonia oceanica. Plant Physiol, 2000, 123(4): 1571–1582CrossRefGoogle Scholar
  9. 9.
    Roosens N H, Bernard C, Leplae R, et al. Evidence for copper homeostasis function of metallothionein (MT3) in the hyperaccumulator Thlaspi caerulescens. FEBS Lett, 2004, 577(1–2): 9–16CrossRefGoogle Scholar
  10. 10.
    Cobbett C, Goldsbrough P. Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol, 2002, 53: 159–182CrossRefGoogle Scholar
  11. 11.
    Zhigang A, Cuijie L, Yuangang Z, et al. Expression of BjMT2, a metallothionein 2 from Brassica juncea, increases copper and cadmium tolerance in Escherichia coli and Arabidopsis thaliana, but inhibits root elongation in Arabidopsis thaliana seedlings. J Exp Bot, 2006, 57(14): 3575–3582CrossRefGoogle Scholar
  12. 12.
    Zimeri A M, Dhankher O P, McCaig B, et al. The plant MT1 metallothioneins are stabilized by binding cadmiums and are required for cadmium tolerance and accumulation. Plant Mol Biol, 2005, 58(6): 839–855CrossRefGoogle Scholar
  13. 13.
    Lee J, Shim D, Song WY, et al. Arabidopsis metallothioneins 2a and 3 enhance resistance to cadmium when expressed in Vicia faba guard cells. Plant Mol Biol, 2004, 54(6): 805–815CrossRefGoogle Scholar
  14. 14.
    Schor-Fumbarov T, Goldsbrough P B, Adam Z, et al. Characterization and expression of a metallothionein gene in the aquatic fern Azolla filiculoides under heavy metal stress. Planta, 2005, 223(1): 69–76CrossRefGoogle Scholar
  15. 15.
    Zhou J, Goldsbrough P B. Functional homologs of fungal metallothionein genes from Arabidopsis. Plant Cell, 1994, 6(6): 875–884CrossRefGoogle Scholar
  16. 16.
    Akashi K, Nishimura N, Ishida Y, et al. Potent hydroxyl radical-scavenging activity of drought-induced type-2 metallothionein in wild watermelon. Biochem Biophys Res Commun, 2004, 323(1): 72–78CrossRefGoogle Scholar
  17. 17.
    Dunaeva M, Adamska I. Identification of genes expressed in response to light stress in leaves of Arabidopsis thaliana using RNA differential display. Eur J Biochem, 2001, 268: 5521–5529CrossRefGoogle Scholar
  18. 18.
    Mir G, Domenech J, Huguet G, et al. A plant type 2 metallothionein (MT) from cork tissue responds to oxidative stress. J Exp Bot, 2004, 55(408): 2483–2493CrossRefGoogle Scholar
  19. 19.
    Yu L H, Umeda M, Liu J Y, et al. A novel MT gene of rice plants is strongly expressed in the node portion of the stem. Gene, 1998, 206(1): 29–35CrossRefGoogle Scholar
  20. 20.
    Laraque D, Trasande L. Lead poisoning: Successes and 21st century challenges. Pediatr Rev, 2005, 26(12): 435–443Google Scholar
  21. 21.
    Zhou G K, Xu Y F, Liu J Y. Characterization of a rice class II metallothionein gene: tissue expression patterns and induction in response to abiotic factors. J Plant Physiol, 2005, 162(6): 686–696CrossRefGoogle Scholar
  22. 22.
    Zhou G, Xu Y, Li J, et al. Molecular analyses of the metallothionein gene family in rice (Oryza sativa L.). J Biochem Mol Biol, 2006, 39(5): 595–606Google Scholar
  23. 23.
    Sherman F. Getting started with yeast. Methods Enzymol, 1991, 28: 3–20CrossRefGoogle Scholar
  24. 24.
    Bovet L, Eggmann T, Meylan-Bettex M, et al. Transcript levels of AtMRPs after cadmium treatment: Induction of AtMRP3. Plant Cell and Environ, 2003, 26: 371–381CrossRefGoogle Scholar
  25. 25.
    De Freitas J, Wintz H, Kim JH, et al. Yeast, a model organism for iron and copper metabolism studies. Biometals, 2003, 16(1): 185–197CrossRefGoogle Scholar
  26. 26.
    Song W Y, Sohn E J, Martinoia E, et al. Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nature Biotechnol, 2003, 21(8): 914–919CrossRefGoogle Scholar

Copyright information

© Science in China Press 2007

Authors and Affiliations

  • Xu YuFeng 
    • 1
  • Zhou GongKe 
    • 1
  • Zhou Lu 
    • 1
  • Li YiQin 
    • 1
  • Liu JinYuan 
    • 1
  1. 1.Laboratory of Molecular Biology and Protein Science Key Laboratory of the Ministry of Education, Department of Biological Sciences and BiotechnologyTsinghua UniversityBeijingChina

Personalised recommendations