Chinese Science Bulletin

, Volume 52, Issue 14, pp 1929–1941

Study on structure-activity relationship of mutation-dependent herbicide resistance acetohydroxyacid synthase through 3D-QSAR and mutation

  • Yu ZhiHong 
  • Niu CongWei 
  • Ban ShuRong 
  • Wen Xin 
  • Xi Zhen 
Articles Chemical Biology


Seventy-four sulfonylureas were synthesized and tested for their inhibitory activity against the whole enzyme of E. coli acetohydroxyacid synthase (AHAS, EC isoenzyme II, and 3D-QSAR analyses were performed based on these inhibitory activities. The binding conformation of chlorimuron-ethyl, a commercial herbicide of AHAS, in the crystal structure of AHAS complex was extracted and used as template to build the initial three-dimensional structure of other sulfonylureas, and then all structures were fully geometry optimized. After systematic optimization of the alignment rule, molecular orientation, grid space and attenuation factor, two satisfactory models with excellent performances (CoMFA: q2 = 0.735, r2 = 0.954, n = 7, rpred2 = 0.832; CoMSIA: q2 = 0.721, r2 = 0.913, n = 8, rpred2 = 0.844) were established. By mapping the 3D contour maps of CoMFA and CoMSIA models into the possible inhibitory active site in the crystal structure of catalytic subunit of yeast AHAS, a plausible binding model for AHAS, with best fit QSAR in the literature so far, was proposed. Moreover, the results of 3D-QSAR were further utilized to interpret resistance of site-directed mutants. A relative activity index (RAI) for AHAS enzyme mutant was defined for the first time to relate the 3D-QSAR and resistance of mutants. This study, for the first time, demonstrated that combination of 3D-QSAR and enzyme mutation can be used to decipher the molecular basis of ligand-receptor interaction mechanism. This study refined our understanding of the ligand-receptor interaction and resistance mechanism in AHAS-sulfonylurea system, and provided basis for designing new potent herbicides to combat the herbicide resistance.


sulfonylurea acetohydroxyacid synthase 3D-QSAR CoMFA CoMSIA site-directed mutation herbicide resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Defelice M, Guardiola J, Esposito B, et al. Structural genes for a newly recognized acetolactate synthase in Escherichia coli K-12. J Bacteriol, 1974, 120(3): 10680–1077Google Scholar
  2. 2.
    Guardiola J, Defelice M, Lamberti A, et al. Acetolactate synthaseisoenzymes of Escherichia Coli K-12. Mol Gen Genet, 1977, 156(1): 17–25CrossRefGoogle Scholar
  3. 3.
    Duggleby R G, Pang S S. Acetohydroxyacid synthase. J Biochem Mol Biol, 2000, 33(1): 1–36Google Scholar
  4. 4.
    Ray T B. Herbicides as inhibitors of amino acid biosynthesis. In: Boger P, Sandmann G, eds. Target Sites of Herbicide Action. Boca Raton: CRC Press Inc., 1989. 105–125Google Scholar
  5. 5.
    Schloss J V. Modern aspects of enzyme inhibition with particular emphasis on reaction-intermediate analogs and other potent, reversible inhibitors. In: Boger P, Sandmann G, eds. Target Sites of Herbicide Action. Boca Raton: CRC Press Inc., 1989. 165–245Google Scholar
  6. 6.
    Ott K H, Kwagh J G, Stockton G W, et al. Rational molecular design and genetic engineering of herbicide resistant crops by structure modeling and site-directed mutagenesis of acetohydroxyacid synthase. J Mol Biol, 1996, 263(2): 359–368CrossRefGoogle Scholar
  7. 7.
    Ibdah M, Barllan A, Livnah O, et al. Homology modeling of the structure of bacterial acetohydroxy acid synthase and examination of the active site by site-directed mutagenesis. Biochemistry, 1996, 35(50): 16282–16291CrossRefGoogle Scholar
  8. 8.
    Chang A K, Duggleby R G. Herbicide-resistant forms of Arabidopsis thaliana acetohydroxyacid synthase: characterization of the catalytic properties and sensitivity to inhibitors of four defined mutants. Biochem J, 1998, 333: 765–777Google Scholar
  9. 9.
    Hill C M, Duggleby R G. Mutagenesis of Escherichia coli acetohydroxyacid synthase isoenzyme II and characterization of three herbicide-insensitive forms. Biochem J, 1998, 335: 653–661Google Scholar
  10. 10.
    Lee Y T, Chang A K, Duggleby R G. Effect of mutagenesis at serine 653 of Arabidopsis thaliana acetohydroxyacid synthase on the sensitivity to imidazolinone and sulfonylurea herbicides. FEBS Lett, 1999, 452(3): 341–345CrossRefGoogle Scholar
  11. 11.
    Duggleby R G, Pang S S, Yu H Q, et al. Systematic characterization of mutations in yeast acetohydroxyacid synthase-Interpretation of herbicide-resistance data. Eur J Biochem, 2003, 270(13): 2895–2904CrossRefGoogle Scholar
  12. 12.
    Pang S S, Duggleby R G, Guddat L W. Crystal structure of yeast acetohydroxyacid synthase: A target for herbicidal inhibitors. J Mol Biol, 2002, 317(2): 249–262CrossRefGoogle Scholar
  13. 13.
    Pang S S, Guddat L W, Duggleby R G. Molecular basis of sulfonylurea herbicide inhibition of acetohydroxyacid synthase. J Biol Chem, 2003, 278(9): 7639–7644CrossRefGoogle Scholar
  14. 14.
    McCourt J A, Pang S S, Guddat L W, et al. Elucidating the specificity of binding of sulfonylurea herbicides to acetohydroxyacid synthase. Biochemistry, 2005, 44(7): 2330–2338CrossRefGoogle Scholar
  15. 15.
    McCourt J A, Pang S S, King-Scott J, et al. Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proc Natl Acad Sci USA, 2006, 103(3): 569–573CrossRefGoogle Scholar
  16. 16.
    Yang G F, Huang X Q. Development of quantitative structure-activity relationships and its application in rational drug design. Curr Pharmaceut Des, 2006, 12(35): 4601–4611CrossRefGoogle Scholar
  17. 17.
    Liu J, Wang X, Ma Y, et al. Comparative molecular field analysis on a set of new herbicidal sulfonylurea compounds. Chin Chem Lett, 1997, 8(6): 503–504Google Scholar
  18. 18.
    Liu J, Li Z M, Wang X, et al. Comparative molecular field analysis (CoMFA) of new herbicidal sulfonylurea compounds. Sci China Ser B-Chem, 1998, 41(1): 50–53Google Scholar
  19. 19.
    Yang G F, Zhao G F, Lu R J, et al. Design, synthesis and bioactivity of novel ALS inhibitors (V)—Initial model of the herbicidal sulfonylureas and fused heterocyclic sulfonamides binding with receptor. Sci China Ser B-Chem, 1998, 41(4): 353–360Google Scholar
  20. 20.
    Yang G F, Liu H Y, Yang H Z. QSAR and 3D-QSAR analysis of structurally diverse ALS inhibitors: sulfonylureas and triazolopyrimidine-2-sulfonamides. Pestic Sci, 1999, 55(12): 1143–1150CrossRefGoogle Scholar
  21. 21.
    Yang G F, Liu H Y, Yang X F, et al. Design, syntheses and biological activity of novel ALS inhibitors (IX)-CoMFA of sulfonylureas and triazolopyrimidine-2-sulfonamides ALS inhibitors. Sci China Ser B-Chem, 1999, 42(6): 656–662CrossRefGoogle Scholar
  22. 22.
    Yang G F, Yang H Z. Design, synthesis and bioactivity of novel herbicides targeted ALS (VII): Quantitative structure-activity relationships of herbicidal sulfonylureas. Chin J Chem, 1999, 17(6): 650–657Google Scholar
  23. 23.
    Qian X H. Quantitative studies on structure-activity relationship of sulfonylurea and benzoylphenylurea type pesticides and their substituents’ bioisosterism using synthons’ activity contribution. J Agric Food Chem, 1999, 47(10): 4415–4418CrossRefGoogle Scholar
  24. 24.
    Yang G F, Yang H Z. Synthesis of novel herbicidal sulfonylureas. China J Chem, 2000, 18(4): 585–589Google Scholar
  25. 25.
    Hou T J, Li Z M, Li Z, et al. Three-dimensional quantitative structure-activity relationship analysis of the new potent sulfonylureas using comparative molecular similarity indices analysis. J Chem Inf Comput Sci, 2000, 40(4): 1002–1009CrossRefGoogle Scholar
  26. 26.
    Yang H Z, Yang G F, Zhao H B, et al. Research development of rational molecular design of ALS inhibitors. Acta Chim Sin, 2001, 59(4): 447–455Google Scholar
  27. 27.
    Galeazzi R, Marucchini C, Orena M, et al. Molecular structure and stereoelectronic properties of herbicide sulphonylureas. Bioorg Med Chem, 2002, 10(4): 1019–1024CrossRefGoogle Scholar
  28. 28.
    Wang J G, Li Z M, Ma N, et al. Structure-activity relationships for a new family of sulfonylurea herbicides. J Comput-Aided Mol Des, 2005, 19(11): 801–820CrossRefGoogle Scholar
  29. 29.
    Xi Z, Yu Z H, Niu C W, et al. Development of a general quantum-chemical descriptor for steric effects: density functional theory based QSAR study of herbicidal sulfonylurea analogues. J Comput Chem, 2006, 27(13): 1571–1576CrossRefGoogle Scholar
  30. 30.
    Cramer R D, Patterson D E, Bunce J D. Comparative molecular-field analysis (Comfa). 1. Effect of shape onbinding of steroids to carrier proteins. J Am Chem Soc, 1988, 110(18): 5959–5967CrossRefGoogle Scholar
  31. 31.
    Klebe G, Abraham U, Mietzner T. Molecular similarity indexes in a comparative-analysis (Comsia) of drug molecules to correlate and predict their biological-activity. J Med Chem, 1994, 37(24): 4130–4146CrossRefGoogle Scholar
  32. 32.
    Engel S, Vyazmensky M, Vinogradov M, et al. Role of a conserved arginine in the mechanism of acetohydroxyacid synthase-Catalysis of condensation with a specific ketoacid substrate. J Biol Chem, 2004, 279(23): 24803–24812CrossRefGoogle Scholar
  33. 33.
    The QIAexpressionist: A hand book for high-level expression and purification of 6xHis-tagged proteins. QIAGEN, USAGoogle Scholar
  34. 34.
    Bradford M M. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem, 1976, 72(1–2): 248–254CrossRefGoogle Scholar
  35. 35.
    Westerfeld W W. A colorimetric determination of blood acetoin. J Biol Chem, 1945, 161(2): 495–502Google Scholar
  36. 36.
    Singh B K, Stidham M A, Shaner D L. Assay of acetohydroxyacid synthase. Anal Biochem, 1988, 171(1): 173–179CrossRefGoogle Scholar
  37. 37.
    Tripos Associates: SYBYL. Version 6.9. St. Louis, Missouri. 2002Google Scholar
  38. 38.
    Clark M, Cramer R D, Vanopdenbosch N. Validation of the general-purpose Tripos 5.2 force-field. J Comput Chem, 1989, 10(8): 982–1012CrossRefGoogle Scholar
  39. 39.
    Powell M J D. Restart procedures for conjugate gradient method. Math Program, 1977, 12(2): 241–254CrossRefGoogle Scholar
  40. 40.
    Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity-a papid access to atomic charges. Tetrahedron, 1980, 36(22): 3219–3228CrossRefGoogle Scholar
  41. 41.
    Wold S, Albano, C, Dunn W J, et al. Multivariate data analysis in chemistry. NATO ASI Ser, Ser C, 1984, 138: 17–95Google Scholar
  42. 42.
    Lindgren F, Geladi P, Wold S. The kernel algorithm for Pls. J Chemometr, 1993, 7(1): 45–59CrossRefGoogle Scholar
  43. 43.
    Rannar S, Lindgren F, Geladi P, et al. A Pls kernel algorithm for data sets with many variables and fewer objects. 1. Theory and Algorithm. J Chemometr, 1994, 8(2): 111–125CrossRefGoogle Scholar
  44. 44.
    Cho S J, Tropsha A. Cross-validated R(2)-guided region selection for comparative molecular-field analysis-a simple method to achieve consistent results. J Med Chem, 1995, 38(7): 1060–1066CrossRefGoogle Scholar
  45. 45.
    Wang R X, Gao Y, Liu L, et al. All-orientation search and all-placement search in comparative molecular field analysis. J Mol Model, 1998, 4(8): 276–283CrossRefGoogle Scholar
  46. 46.
    Du Q S, Liu P J, Sun H, et al. Quantum chemical description for molecular lipophilicity and hydrophilicity: II. Lipophilic indices and hydrophilic indices of aminoacid side chains. Acta Chim Sin, 2006, 64(1): 22–26Google Scholar
  47. 47.
    Xi Z, Niu C W, Li Q X, et al. Studies on herbicide design through mutation on herbicidal target acetohydroxyacid synthase(I). Enzyme kinetics of wild type and mutants of E. coli AHAS II. Chin J Pestic Sci, 2005, 7(3): 215–220Google Scholar
  48. 48.
    Xi Z, Niu C W, Ban S R, et al. Studies on herbicide design through mutation on herbicidal target acetohydroxyacid synthase(II). Effects of mutagenesis at tryptophan 464 of E. coli acetohydroxyacid synthase on herbicidal molecules. Chin J Pestic Sci, 2005, 7(4): 311–315Google Scholar

Copyright information

© Science in China Press 2007

Authors and Affiliations

  • Yu ZhiHong 
    • 1
  • Niu CongWei 
    • 1
  • Ban ShuRong 
    • 1
  • Wen Xin 
    • 1
  • Xi Zhen 
    • 1
  1. 1.State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyNankai UniversityTianjinChina

Personalised recommendations