Chinese Science Bulletin

, Volume 52, Issue 10, pp 1307–1310 | Cite as

Micelles-template induced organic nanocrystals based on iodo⋯nitro interactions

  • Wang Jia 
  • Zhang ZuoLun 
  • Ye JunWei 
  • Zhang JingYing 
  • Wang Yue 
Articles Organic Chemistry
  • 34 Downloads

Abstract

The nanocrystals based on a polar organic compound INBP (4-iodo-4′-nitrobiphenyl) have been fabricated by reprecipitation approach. For the formation of INBP based nanocrystals, the intermolecular iodo⋯nitro interaction is the dominant driving force and the micelles formed by the surfactant CTAB (cetyltrimethylammonium bromide) molecules are the efficient templates for controlling morphologies of nanocrystals. The field emission scanning electro microscope (FESEM) images demonstrated that prism-like and needle-like nanocrystals of INBP were formed in pure water and micell containing aqueous solution, respectively. XRD pattern and UV/vis absorption spectra were employed to characterize the nanocrystals.

Keywords

organic nanocrystals micell-template iodo⋯nitro interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Noy A, Miller A E, Klare J E, et al. Fabrication of luminescent nanostructures and polymer nanowires using dip-pen nanolithography. Nano Lett, 2002, 2(2): 109–112CrossRefGoogle Scholar
  2. 2.
    Zhang H, Li Z, Mirkin C A. Dip-pen nanolithography-based methodology for preparing arrays of nanostructures functionalized with oligonucleotides. Adv Mater, 2002, 14(20): 1472–1474CrossRefGoogle Scholar
  3. 3.
    Lim J H, Mirkin C A. Electrostatically driven dip-pen nanolithography of conducting polymers. Adv Mater, 2002, 14(20): 1474–1477CrossRefGoogle Scholar
  4. 4.
    Jiang H Q, Sun X Q, Huang M H, et al. Rapid self-assembly of oligo(o-phenylenediamine) into one-dimensional structures through a facile reprecipitation route. Langmuir, 2006, 22(7): 3358–3361PubMedCrossRefGoogle Scholar
  5. 5.
    Zhao Y S, Yang W S, Xiao D B, et al. Single crystalline submicrotubes from small organic molecules. Chem Mater, 2005, 17(25): 6430–6435CrossRefGoogle Scholar
  6. 6.
    Tian Z Y, Zhang Y Z, Ma Y, et al. Novel mesostructures of a stibazolium-like dye based on multistage association. Colloids Surf A, 2005, 269: 16–21CrossRefGoogle Scholar
  7. 7.
    George S, Nangia A, Lam C K, et al. Crystal engineering of urea α-network via I…O synthon and design of SGH active crystal N-4-iodophenyl-N′-4′-nitrophenylurea. Chem Commun, 2004, 10: 1202–1203CrossRefGoogle Scholar
  8. 8.
    Thaimattam R, Sharma C V K, Clearfield A. Diamondoid and square grid networks in the same structure. Crystal engineering with the iodo…nitro supramolecular synthon. Crystal Growth & Design, 2001, 1(2): 103–106CrossRefGoogle Scholar
  9. 9.
    Hulliger J, Roth S W, Quintel A. Polarity of organic supramolecular materials: a tunable crystal property. J Solid State Chem, 2000, 152: 49–56CrossRefADSGoogle Scholar
  10. 10.
    Messina M T, Metrangolo P, Panzein W, et al. Intermolecular recognition between hydrocarbon oxygen-donors and perfluorocarbon iodine-acceptors: the shortest O…I non-covalent bond. Tetrahedron, 2001, 57: 8543–8550CrossRefGoogle Scholar
  11. 11.
    Sarma J A R P, Allen F H, Hoy V J, et al. Design of an SHG-active crystal, 4-iodo-4′-nitrobiphenyl: the role of supramolecular synthons. Chem Commun, 1997, 1: 101–102CrossRefGoogle Scholar
  12. 12.
    Masciocchi N, Bergamo M, Sironi A. Comments on the elusive crystal structure of 4-iodo-4′-nitrobiphenyl. Chem Commun, 1998, 13: 1347–1348CrossRefGoogle Scholar
  13. 13.
    Hiremath R, Varney S W, Swift J A. Oriented crystal growth of 4-iodo-4′-nitrobiphenyl on polar self-assembled monolayer templates: a case for “Chemical epitaxy”. Chem Mater, 2004, 16(24): 4948–4954CrossRefGoogle Scholar
  14. 14.
    Hiremath R, Basile J A, Varney S W, et al. Controlling molecular crystal polymorphism with self-assembled monolayer templates. J Am Chem Soc, 2005, 127(51): 18321–18327PubMedCrossRefGoogle Scholar
  15. 15.
    Staab E, Addadi L, Leiserowitz L, et al. Control of polymorphism by ‘tailor-made’ polymeric crystallization auxiliaries. Preferential precipitation of a metastable polar form for second harmonic generation. Adv Mater, 1990, 2(1): 40–43CrossRefGoogle Scholar
  16. 16.
    Lang M, Grzesiak A L, Matzger A J. The use of polymer heteronuclei for crystalline polymorph selection. J Am Chem Soc, 2002, 124(50): 14834–14835PubMedCrossRefGoogle Scholar
  17. 17.
    Peng X G, Manna L, Yang W D, et al. Shape control of CdSe nanocrystals. Nature, 2000, 404: 59–61CrossRefADSGoogle Scholar
  18. 18.
    Yu Y Y, Chang S S, Lee C L, et al. Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B, 1997, 101(34): 6661–6664CrossRefGoogle Scholar
  19. 19.
    Link S, Mohamed M B, El-Sayed M A. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B, 1999, 103(16): 3073–3077CrossRefGoogle Scholar
  20. 20.
    Jana N R, Murphy C J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem Commun, 2001, 7: 617–619CrossRefGoogle Scholar
  21. 21.
    Murphy C J, Jana N R. controlling the aspect ratio of inorganic nanorods and nanowires. Adv Mater, 2002, 14(1): 80–82CrossRefGoogle Scholar
  22. 22.
    Fu H B, Xiao D B, Yao J N, et al. Nanofibers of 1,3-diphenyl-2-pyrazoline induced by cetyltrimethylammonium bromide micelles. Angew Chem In Ed, 2003, 42(25): 2883–2886CrossRefGoogle Scholar
  23. 23.
    Kasai H, Kamatani H, Okada S, et al. Size-dependent colors and luminescences of organic microcrystals. Jpn J Appl Phys, 1996, 35(Part 2, 2B): L221–L23CrossRefGoogle Scholar
  24. 24.
    Kasai H, Kamatani H, Yoshikawa Y, et al. Crystal size dependence of emission from perylene microcrystals. Chem Lett, 1997, 26(11): 1181–1182CrossRefGoogle Scholar
  25. 25.
    Nakanishi H, Katagi H. Microcrystals of polydiacetylene derivatives and their linear and nonlinear optical properties. Supramol Sci, 1998, 5(3–4): 289–295CrossRefGoogle Scholar
  26. 26.
    Fu H B, Yao J N. Size effect on the optical properties of organic nanoparticles. J Am Chem Soc, 2001, 123(7): 1434–1439CrossRefGoogle Scholar
  27. 27.
    Lianos P, Lang J, Strazielle C, et al. Fluorescence probe study of oil-in-water microemulsions. 1. Effect of pentanol and dodecane or toluene on some properties of sodium dodecyl sulfate micelles. J Phys Chem, 1982, 86(6): 1019–1025CrossRefGoogle Scholar
  28. 28.
    Nagarajan R, Ruckenstein E. Theory of surfactant self-assembly: a predictive molecular thermodynamic approach. Langmuir, 1991, 7(12): 2934–2969CrossRefGoogle Scholar

Copyright information

© Science in China Press 2007

Authors and Affiliations

  • Wang Jia 
    • 1
  • Zhang ZuoLun 
    • 1
  • Ye JunWei 
    • 1
  • Zhang JingYing 
    • 1
  • Wang Yue 
    • 1
  1. 1.Key Laboratory for Supramolecular Structure and Materials of Ministry of Education, College of ChemistryJilin UniversityChangchunChina

Personalised recommendations