Chinese Science Bulletin

, 52:1136

Photonic crystal type structure in bivalve ligament of Pinctada maxima

Brief Communication/Optics


The dry ligament of Pinctada maxima normally appears black; however, it can exhibit striking blue structural colors after being wetted by water. The field-mission SEM investigation shows that the ligament is made of lamellae, which, about 35 μm thick, are made of proteins and aragonite fibers of about 78 nm in diameter. In each single lamella, the fibers are highly aligned characterized by a 2D photonic crystal type structure. According to measured reflective spectra and theoretical simulations, the dry and wet ligaments possess photonic stop band at ultraviolet and blue wavelengths, respectively, which are responsible for structural colorations of ligament.


ligament of Pinctada maxima structural color aragonite fiber photonic crystal 


  1. 1.
    Parker A R, Martini N. Structural colour in animals — simple to complex optics. Opt Laser Tech, 2006, 38: 315–322CrossRefGoogle Scholar
  2. 2.
    Vukusic P, Sambles J R. Photonic structures in biology. Nature, 2003, 424: 852–855PubMedCrossRefGoogle Scholar
  3. 3.
    Parker A R, McPhedran R C, McKenzie D R, et al. Photonic engineering-Aphrodite’s iridescence. Nature, 2001, 409: 36–37PubMedCrossRefGoogle Scholar
  4. 4.
    Zi J, Yu, X, Li Y et al. Coloration strategies in peacock feathers. Proc Natl Acad Sci USA, 2003, 100(22): 12576–12578PubMedCrossRefGoogle Scholar
  5. 5.
    Tan T L, Wong D, Lee P. Iridescence of a shell of mollusk Haliotis glabra. Opt Express, 2004, 12(20): 4847–4854CrossRefPubMedGoogle Scholar
  6. 6.
    Brink D J, van der Berg N G, Botha A J. Iridescent colors on seashell: An optical and structural investigation of Helcion pruinosus. Appl Opt, 2002, 41: 717–722PubMedCrossRefGoogle Scholar
  7. 7.
    Brink D J, van der Berg N G. An investigation of green iridescence on the mollusc Patella granatina. J Phys D: Appl Phys, 2005, 38: 338–343CrossRefGoogle Scholar
  8. 8.
    Li B, Zhou J, Li L et al. One-dimensional photonic bandgap structure in abalone shell. Chin Sci Bull, 2005, 50(14): 1529–1531CrossRefGoogle Scholar
  9. 9.
    Kahler G A, Sass R L, Fisher F M. The fine structure and crystallography of the ligament of Spisula solidissima (Mollusca: Bivalvia: Mactridae). J Comp Physiol, 1976, 109: 209–220Google Scholar
  10. 10.
    Maurice D M. The structure and transparency of the cornea. J Physiol, 1957, 136: 263–286PubMedGoogle Scholar
  11. 11.
    Prum R O, Morrison R L, Eyck G R T. Structural color production by constructive reflection from ordered collagen arrays in a bird (Philepitta castanea: Eurylamidae). J Morpho, 1994, 222: 61–72CrossRefGoogle Scholar
  12. 12.
    Jin C, Cheng B, Man B et al. Band gap and wave guiding effect in a quasiperiodic photonic crystal. Appl Phys Lett, 1999, 75(13): 1848–1850CrossRefGoogle Scholar
  13. 13.
    Jin C, Meng X, Cheng B, et al. Photonic gap in amorphous photonic materials. Phys Rew B, 2001, 63: 195107-1–5CrossRefGoogle Scholar
  14. 14.
    Ameen D B, Bishop M F, McMullen T. A lattice model for computing the transmissivity of the Cornea and Sclera. Biophys J, 1998, 75: 2520–2531PubMedCrossRefGoogle Scholar
  15. 15.
    Ono K, Kikuch, Y, Higashi K, et al. Elastic anisotropy of bivalve hinge-ligament. J Biomech, 1990, 23(4): 307–312PubMedCrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2007

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringGuangxi UniversityNanningChina

Personalised recommendations