Advertisement

Chinese Science Bulletin

, Volume 51, Supplement 1, pp 117–123 | Cite as

Systematic position of Myrtama Ovcz. & Kinz. based on morphological and nrDNA ITS sequence evidence

  • Zhang Daoyuan Email author
  • Zhang Yuan 
  • Gaskin J. F. 
  • Chen Zhiduan 
Articles

Abstract

Myrtama is a genus named from Myricaria elegans Royle in the 1970’s in terms of its morphological peculiarities. The establishment of this genus and its systematic position have been disputed since its inception. ITS sequences from 10 species of Tamaricaceae are reported, and analyzed by PAUP 4.0b8 and Bayesian Inference to reconstruct the phylogenies. A single ITS tree is generated from maximum parsimony and MrBayes analyses, respectively. The molecular data set shows strong support for Tamarix and Myricaria as monophyletic genera, and Myrtama as a sister group to the genus Myricaria. Based on morphological differences, a single morphological tree is also generated, in which two major lineages existed but Myrtama is a sister group to Tamarix, rather than Myricaria. The evidence from DNA sequences and morphological characters supports that Myicaria elegans should be put into neither Myricaria nor Tamarix, but kept in its own monotypic genus.

Keywords

ITS sequence Myrtama Ovcz. & Kinz Myricaria elegans Royle Tamaricaceae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crins W J. The Tamaricaceae in the southeastern United States. J Arnold Arb, 1989, 70: 403–425Google Scholar
  2. 2.
    Mabberley D J. The Plant-Book. New York: Cambridge University Press, 1993. 123–130Google Scholar
  3. 3.
    Baum B. The genus Tamarix. Jerusalem: Israel Academy of Sciences and Humanities, 1978. 162–163Google Scholar
  4. 4.
    Zhang P Y, Zhang Y J. Taxonomy study on Myricaria Royle in China. Bull Bot Res (in Chinese), 1984, 4(2): 67–80Google Scholar
  5. 5.
    Gaskin J F, Ghahremani-Nejad F, Zhang D Y, et al. An overview of Frankeniaceae and Tamaricaceae using nuclear rDNA and plastid sequence data. Ann Missouri Bot Gard, 2004, 91(3): 401–409Google Scholar
  6. 6.
    Royle J F. Illustration of the botany and other branches of the natural history of the Himalayan mountains and of the flora of Cashmere, London, 1835, 214Google Scholar
  7. 7.
    Ovchinnikov P N, Kinzikaeva G K. Myrtama Ovcz. et Kinz. gen nov: the new genus from the family Tamaricaceae Link. Dokl Akad Nauk Tadzh SSR, 1977, 20(7): 54–57Google Scholar
  8. 8.
    Qaiser M, Ali S Z. Tamaricaria—A new genus of Tamaricaceae. Blumea, 1978, 24(1): 150–155Google Scholar
  9. 9.
    Zhang Y M, Yin L K, Pan B R. Pollen morphology of the Tamaricaceae from China and its taxonomic significance. Acta Bot Boreal-Occident Sin (in Chinese), 2001, 21(5): 857–864Google Scholar
  10. 10.
    Tang Y C. Xizang Flora (Vo. III) (in Chinese). Beijing: Science Press, 1986. 283–284Google Scholar
  11. 11.
    Xi Y Z. Study on pollen morphology of the Tamaricaceae from China. Bull Bot Res (in Chinese), 1988, 8(3): 23–42Google Scholar
  12. 12.
    Wu Z Y, Lu A M, Tang Y C, et al., eds. The Families and Genera of Angiosperms in China (in Chinese). Beijing: Science Press, 2003. 496–499Google Scholar
  13. 13.
    Rogers S O, Bendich A J. Extraction of DNA from plant tissues. Pl Mol Biol Manual, 1988, 6: 1–10Google Scholar
  14. 14.
    White T J, Bruns T, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sinisky J, et al., eds. Collection in PCR Protocols: A Guide to Methods and Applications. San Diego: Academic Press, 1990. 315–322Google Scholar
  15. 15.
    Takaiwa F, Oono K, Sugiura M. Nucleotide sequence of the 17S–25S spacer region from rice rDNA. Pl Mol Biol, 1985, 4: 355–364CrossRefGoogle Scholar
  16. 16.
    Wang X Q, Li Z Y. The application of sequence analysis of rDNA fragment to the systematic study of the subfamily Cyrtandroideae (Gesneriaceae). Acta Phytotax Sin (in Chinese), 1998, 36(2): 97–105Google Scholar
  17. 17.
    Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res, 1997, 25: 4876–4882CrossRefGoogle Scholar
  18. 18.
    Kumar S, Tamura K, Jakobsen I B, et al. MEGA: molecular evolutionary genetics analysis, version 2.0. Pennsylvania State University, University Park, and Arizona State University, Tempe, 2000Google Scholar
  19. 19.
    Swofford D L. PAUP* phylogenetic analysis using parsimony, ver 4.0b8. Massachusetts: Sinauer, 2000Google Scholar
  20. 20.
    Huelsenbeck J P, Ronquist F. MRBAYES* Bayesian inference of phylogenetic trees. Bioinformatics, 2001, 17: 754–755CrossRefGoogle Scholar
  21. 21.
    Posada D, Crandall K A. Model test: testing the model of DNA substitution. Bioinformatics, 1998, 14(9): 817–818CrossRefGoogle Scholar
  22. 22.
    Zhang Y M, Yin L K, Pan B R. Seed morphology characters and its systematic significance of Tamaricaceae in arid zone of China. J Pl Res Environ (in Chinese), 1998, 7(2): 22–27Google Scholar

Copyright information

© Science in China Press 2006

Authors and Affiliations

  • Zhang Daoyuan 
    • 1
    Email author
  • Zhang Yuan 
    • 2
  • Gaskin J. F. 
    • 3
  • Chen Zhiduan 
    • 2
  1. 1.Turpan Eremophytes Botanical Garden, Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina
  2. 2.Laboratory of Systematic and Evolutionary Botany, Institute of BotanyChinese Academy of SciencesBeijingChina
  3. 3.USDA-ARS-NPARLSidneyUSA

Personalised recommendations