Chinese Science Bulletin

, Volume 51, Issue 14, pp 1780–1784 | Cite as

A 200-ka carbon isotope record from the South China Sea

  • Li Jianru Email author
  • Wang Pinxian 
Brief Communication


A stacked ocean carbon isotope (δ 13C) record of 200 ka is established on the basis of planktonic foraminifer (Globigerinoides ruber) δ 13C data from 8 sites in the South China Sea (SCS). The δ 13C record from the SCS displays a trend similar to that from the Pacific and Atlantic oceans mainly responding to long eccentricity and precession cycles, with all the three δ 13C minima occurring at glacial terminations. Thus, the changes of the oceanic carbon reservoir in glacial cycles should not be considered as a response only to ice-sheet variations, but could have been driven also by low latitude processes, such as the monsoon.


South China Sea carbon isotope carbon cycle late Quaternary 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kroopnick P M. The distribution of 13C of ΣCO2 in the world oceans. Deep Sea Research, 1985, 32(1): 57–84CrossRefGoogle Scholar
  2. 2.
    Mackensen A, Bickert T. Stable carbon isotopes in benthic foraminifera:proxies for deep and bottom water circulation and New production. In: Fischer G, Wefer G, eds. Use of Proxies in Paleoceanography: Examples from the South Atlantic. Berlin Heidelberg: Spinger-Verlag, 1999. 229–254Google Scholar
  3. 3.
    Sigman D M, Boyle E A. Glacial/interglacial variation in atmospheric carbon dioxide. Nature, 2000, 407: 859–869CrossRefGoogle Scholar
  4. 4.
    Wang P, Tian J, Chen X, et al. Exploring cyclic changes of the ocean carbon reservoir. Chin Sci Bull, 2003, 48(23): 2536–2548CrossRefGoogle Scholar
  5. 5.
    Wang P, Tian J, Cheng X, et al. Carbon reservoir change preceded major ice-sheets expansion at Mid-Brunhes Event. Geology, 2003, 31: 239–242CrossRefGoogle Scholar
  6. 6.
    Wang P X, Tian J, Cheng X R, et al. Major Pleistocene stages in a carbon perspective: The South China Sea record and its global comparison. Paleoceanography, 2004, 19, doi: 10.1029/2003PA000991Google Scholar
  7. 7.
    Tian J, Wang P, Cheng X, et al. Astronomically tuned Plio-Pleistocene benthic δ8O record from South China Sea and Atlantic-Pacific comparison. Earth and Planetary Science Letters, 2002, 203: 1015–1029CrossRefGoogle Scholar
  8. 8.
    Wang P, Prell W L, Blum P, et al. Proceedings of the Ocean Drilling Program, Initial Reports, V184 (CD-ROM), Nat Sci Found & Joint Oceanogr. Inst Inc, 2000Google Scholar
  9. 9.
    Ludvig L, Lin H L, Sarnthein M. Temporal variations of the trace fossil Zoophycos in a 426 k.y.-long record from the South China Sea: implications to the ethology of the late Quaternary Zoophycos-producer. Geological Magazine, 2006, 143(1): 105–114Google Scholar
  10. 10.
    Wang L, Sarnthein M, Erlenkeuser H, et al. East Asian monsoon climate during the Late Pleistocene: High-resolution sediment records from the South China Sea. Marine Geology, 1999, 156: 245–284CrossRefGoogle Scholar
  11. 11.
    Qian Jianxing. Paleooceanoraphy for the late Quaternary in the South China Sea. Beijing: Scientific Press, 1999Google Scholar
  12. 12.
    Zachos J S, Pagani M, Sloan L, et al. Trends, Rhythms, and aberrations in global climate 65 Ma to present. Science, 2001, 292: 686–693CrossRefGoogle Scholar
  13. 13.
    Shackleton N J, Hall M A. Stable isotope history of the Pleistocene at ODP Site 677. Proc ODP Sci Results, 1990, 111: 295–316Google Scholar
  14. 14.
    Schmidt H, Berger W H, Bickert T, et al. Quaternary carbon isotope record of pelagic foraminifers: Site 806, Ontong Java Plateau. Proc ODP Sci Results, 1993, 130: 397–409Google Scholar
  15. 15.
    Tiedemann R, Sarthein M, Shackleton H J. Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records from Ocean Drilling Program Site 659. Paleoceanography, 1994, 9: 619–638CrossRefGoogle Scholar
  16. 16.
    Hodell A D, Charles D C, Ninnemann S U. Comparison of interglacial stages in the South Atlantic sector of the southern ocean for the past 450 kyr: implifications for Marine Isotope Stage (MIS) 11. Global and Planetary Change, 2000, 24: 7–26CrossRefGoogle Scholar
  17. 17.
    Farrell J W, Janecek T R. Late Neogene paleoceanography and paleoclimatology of the northern Indian Ocean (Site 758). Proc ODP Sci Results, 1991, 121: 297–355Google Scholar
  18. 18.
    Keigwin L D, Boyle A E. Carbon isotopes in deep-sea benthic foraminifera: Precession and changes in low-latitude biomass. In: Sundquist T E, Broecker S W, eds. The Carbon Cycle and Atmosphere CO2: Natural Variations Archean to Present, AGU, Washington D C, 1985. 319–389Google Scholar
  19. 19.
    Crowley T J. Ice age terrestrial carbon changes revisited. Global Biogeochemical Cycles, 1995, 9: 377–389CrossRefGoogle Scholar
  20. 20.
    Duplessy J C, Shackleton N J, Fairbanks R G, et al. Deep water source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography, 1988, 3: 343–360Google Scholar
  21. 21.
    Ninnemann U S, Charles C D. Regional differences in Quaternary Subantarctic nutrient cycling: Link to intermediate and deep water ventilation. Paleoceanography, 1997, 12: 560–567CrossRefGoogle Scholar
  22. 22.
    Curry W B, Crowley T J. The δ 13C of equatorial Atlantic surface waters: Implications for ice age pCO2 levels. Paleoceanography, 1987, 2: 489–517CrossRefGoogle Scholar
  23. 23.
    Spero H J, Lea D W. The cause of carbon isotope minimum events on glacial terminations. Science, 2002, 296: 522–525CrossRefGoogle Scholar
  24. 24.
    Ruddiman W F. Earth’s Climate: Past and Future. New York: Freeman W H & Co, 2001. 465Google Scholar

Copyright information

© Science in China Press 2006

Authors and Affiliations

  1. 1.State Key Laboratory of Marine GeologyTongji UniversityShanghaiChina

Personalised recommendations