Chinese Science Bulletin

, Volume 51, Issue 13, pp 1529–1537

Complex networks theory for analyzing metabolic networks

Review

Abstract

One of the main tasks of post-genomic informatics is to systematically investigate all molecules and their interactions within a living cell so as to understand how these molecules and the interactions between them relate to the function of the organism, while networks are appropriate abstract description of all kinds of interactions. In the past few years, great achievement has been made in developing theory of complex networks for revealing the organizing principles that govern the formation and evolution of various complex biological, technological and social networks. This paper reviews the accomplishments in constructing genome-based metabolic networks and describes how the theory of complex networks is applied to analyze metabolic networks.

Keywords

bioinformatics systems biology metabolic network network topology network decomposition network robustness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kanehisa M. Post-Genome Informatics. Oxford: Oxford Univ Press, 2000Google Scholar
  2. 2.
    Erdös P, Rényi A. On random graphs. Publ Math Debrecen, 1959, 6: 290–297Google Scholar
  3. 3.
    Watts D J, Strogatz S H. Collective dynamics of ’small-world’ networks. Nature, 1998, 393: 440–442CrossRefGoogle Scholar
  4. 4.
    Barabasi A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286: 509–512CrossRefGoogle Scholar
  5. 5.
    Jeong H, Tombor B, Albert R, et al. The large-scale organization of metabolic networks. Nature, 2000, 407: 651–654CrossRefGoogle Scholar
  6. 6.
    Goto S, Nishioka T, Kanehisa M. LIGAND: Chemical database for enzyme reactions. Bioinformatics, 1998, 14: 591–599CrossRefGoogle Scholar
  7. 7.
    Bairoch A. The ENZYME data bank in 1995. Nucleic Acids Res, 1996, 24: 221–222CrossRefGoogle Scholar
  8. 8.
    Nakao M, Bono H, Kawashima S, et al. Genome-scale gene expression analysis and pathway reconstruction in KEGG. Genome Informatics, 1999, 10: 94–103Google Scholar
  9. 9.
    Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 2000, 28: 27–30CrossRefGoogle Scholar
  10. 10.
    Karp P D, Krummenacker M, Paley S, et al. Integrated pathway-genome databases and their role in drug discovery. Trends Biotechnol, 1999, 17: 275–281CrossRefGoogle Scholar
  11. 11.
    Karp P D. Pathway databases: A case study in computational symbolic theories. Science, 2001, 293: 2040–2044CrossRefGoogle Scholar
  12. 12.
    Overbeek R, Larsen N, Pusch G D, et al. WIT: Integrated system for high-throughput genome sequence analysis and metabolic reconstruction. Nucleic Acids Res, 2000, 28: 123–125CrossRefGoogle Scholar
  13. 13.
    Schuster S, Fell D, Dandekar T. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nature Biotechnol, 2000, 18: 326–332CrossRefGoogle Scholar
  14. 14.
    Wagner A, Fell D A. The small world inside large metabolic networks. Proc R Soc Lond B, 2001, 268: 1803–1810CrossRefGoogle Scholar
  15. 15.
    Ravasz E, Somera A L, Mongru D A, et al. Hierarchical organization of modularity in metabolic networks. Science, 2002, 297: 1551–1556CrossRefGoogle Scholar
  16. 16.
    Ma H W, Zeng A P. Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics, 2003, 19: 270–277CrossRefGoogle Scholar
  17. 17.
    Ma H W, Zeng A P. The connectivity structure, giant strong component and centrality of metabolic networks. Bioinformatics, 2003, 19: 1423–1430CrossRefGoogle Scholar
  18. 18.
    Guimera R, Amaral L A N. Functional cartography of complex metabolic networks. Nature, 2005, 433: 895–900CrossRefGoogle Scholar
  19. 19.
    Ma H W, Zhao X M, Yuan Y J, et al. Decomposition of metabolic network into functional modules based on the global connectivity structure of reaction graph., Bioinformatics, 2004, 20: 1870–1876CrossRefGoogle Scholar
  20. 20.
    Horne A B, Hodgman T C, Spence H D, et al. Constructing an enzyme-centric view of metabolism. Bioinformatics, 2004, 20: 2050–2055CrossRefGoogle Scholar
  21. 21.
    Gagneur J, Jackson D B, Casari G. Hierarchical analysis of dependency in metabolic networks. Bioinformatics, 2003, 19: 1027–1034CrossRefGoogle Scholar
  22. 22.
    Lemke N, Herédia F, Barcellos C K, et al. Essentiality and damage in metabolic networks. Bioinformatics, 2004, 20: 115–119CrossRefGoogle Scholar
  23. 23.
    Arita M. The metabolic world of Escherichia coli is not small. Proc Natl Acad Sci USA, 2004, 101: 1543–1547CrossRefGoogle Scholar
  24. 24.
    Broder A, Kumar R, Maghoul F, et al. Graph structure in the web. Comput Netw, 2000, 33: 309–320CrossRefGoogle Scholar
  25. 25.
    Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationships of the internet topology. Comp Comm Rev, 1999, 29: 251–262CrossRefGoogle Scholar
  26. 26.
    Ravasz E, Barabási A L. Hierarchical organization in complex networks. Phys Rev E, 2003, 67: 026112Google Scholar
  27. 27.
    Hartwell L H, Hopfield J J, Leibler S, et al. From molecular to modular cell biology. Nature, 1999, 402: C47–C51CrossRefGoogle Scholar
  28. 28.
    Lipson H, Pollack J B, Suh N P. On the origin of modular variation. Evolution, 2002, 56: 1549–1556.Google Scholar
  29. 29.
    Papin J A, Price N D, Palsson B O. Extreme pathway lengths and reaction participation in genome-scale metabolic networks. Genome Res, 2002, 12: 1889–1900CrossRefGoogle Scholar
  30. 30.
    Stelling J, Klamt S, Bettenbrock K, et al. Metabolic network structure determines key aspects of functionality and regulation. Nature, 2002, 420: 190–193CrossRefGoogle Scholar
  31. 31.
    Schilling C H, Palsson B O. Assessment of the metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway analysis. J Theor Biol, 2000, 203: 249–283CrossRefGoogle Scholar
  32. 32.
    Schuster S, Pfeiffer T, Moldenhauer F, et al. Exploring the pathway structure of metabolism: Decomposition into subnetworks and application to Mycoplasma pneumoniae. Bioinformatics, 2002, 18: 351–361CrossRefGoogle Scholar
  33. 33.
    Holme P, Huss M, Jeong H. Subnetwork hierarchies of biochemical pathways. Bioinformatics, 2003, 19: 532–538CrossRefGoogle Scholar
  34. 34.
    Schuster R, Holzhütter H G. Use of mathematical models for predicting the metabolic effect of large-scale enzyme activity alterations: Application to enzyme deficiencies of red blood cells. Eur J Biochem, 1995, 229: 403–418CrossRefGoogle Scholar
  35. 35.
    Martinov M V, Plotnikov A G, Vitvitsky V M, et al. Deficiencies of glycolytic enzymes as a possible cause of hemolytic anemia. Biochim Biophys Acta, 2000, 1474: 75–87Google Scholar
  36. 36.
    Bakker B M, Mensonides F I C, Teusink B, et al. Compartmentation protects trypanosomes from the dangerous design of glycolysis. Proc Natl Acad Sci USA, 2000, 97: 2087–2092CrossRefGoogle Scholar
  37. 37.
    Wagner C. Systembiologie gegen Parasiten. BioWorld, 2004, 9: 2–4Google Scholar
  38. 38.
    Kitano H. Biological robustness. Nature Rev Genetic, 2004, 5: 826–837CrossRefGoogle Scholar
  39. 39.
    Stelling J, Sauer U, Szallasi Z, et al. Robustness of cellular functions. Cell, 2004, 118: 675–685CrossRefGoogle Scholar
  40. 40.
    Albert R, Jeong H, Barabasi A L. Error and attack tolerance of complex networks. Nature, 2000, 406: 378–382CrossRefGoogle Scholar
  41. 41.
    Mahadevan R, Palsson B O. Properties of metabolic networks: Structure versus function. Biophysical J, 2005, 88: L7–L9CrossRefGoogle Scholar
  42. 42.
    Samal A, Singh S, Giri V, et al. Low degree metabolites explain essential reactions and enhance modularity in biological networks. BMC Bioinfor, 2006, 7: 118CrossRefGoogle Scholar
  43. 43.
    Palumbo M C, Colosimo A, Giuliani A, et al. Functional essentiality from topology features in metabolic networks: A case study in yeast. FEBS Lett, 2005, 579: 4642–4646CrossRefGoogle Scholar
  44. 44.
    Mombach J C M, Lemke N, Silva N M, et al. Bioinformatics analysis of mycoplasma metabolism: Important enzymes, metabolic similarities, and redundancy. Comput Biol Med, 2006, 36(5): 542–552CrossRefGoogle Scholar
  45. 45.
    Wuchty S, Ravasz E, Barabási A L. The architecture of biological networks. In: Deisboeck T S, Kresh J Y, Kepler T B, eds. Complex Systems in Biomedicine. New York: Kluwer Academic Publishing, 2003Google Scholar
  46. 46.
    Barabasi A L, Oltvai Z N. Network biology: Understanding the cells’s functional organization. Nature Rev Genetics, 2004, 5: 101–113CrossRefGoogle Scholar
  47. 47.
    Oltvai Z N, Barabási A L. Life’s complexity pyramid. Science, 2002, 298: 763–764CrossRefGoogle Scholar
  48. 48.
    Newman M E J. Mixing patterns in networks. Phys Rev E, 2003, 67(2 Pt2): 026126Google Scholar

Copyright information

© Science in China Press 2006

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Shanghai Center for Bioinformation and TechnologyShanghaiChina
  3. 3.Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
  4. 4.Department of mathematicsLogistical Engineering UniversityChongqingChina

Personalised recommendations