Chinese Science Bulletin

, Volume 51, Issue 12, pp 1476–1486 | Cite as

Seasonal variation of snow microbial community structure in the East Rongbuk glacier, Mt. Everest

  • Liu Yongqin 
  • Yao Tandong 
  • Kang Shichang 
  • Jiao Nianzhi 
  • Zeng Yonghui 
  • Shi Yang 
  • Luo Tingwei 
  • Jing Zhefang 
  • Huang Shijun 
Articles

Abstract

The bacterial diversity and abundance in the snow of East Rongbuk glacier, Mt. Everest were examined through 16S rRNA gene clone library and flow cytometry approaches. In total, 35 16S rRNA gene sequences were obtained, which belong to α, β, γ-Proteobacteria, Actinobacteria, Firmicutes, CFB, Cyanobacteria, Eukaryotic chloroplast, and TM7 candidate phylum respectively. γ-Proteobacteria was the dominant bacterial group in this region, while the genera Acinetobacter and Leclercia were dominant on the genus level. The community structure varied seasonally. The bacterial abundance in summer snow was higher than that in winter. Moreover, the snow bacterial community structures in both seasons were diverse, with not only common species but season-specific species. The common species most likely originated from the Tibet Plateau. Bacteria in summer snow are affiliated with marine environment, whereas bacteria in winter snow are closely related to more diverse environments and show the feature of resistance to cold. Seasonal variations of abundance and bacterial diversity were most probably due to the seasonal characteristics of climate and atmospheric circulation in Mt. Everest.

Keywords

Mt. Everest east Rongbuk glacier bacterial diversity and abundance seasonal variation 

References

  1. 1.
    Qin D, Mayewski P A, Wake C P, et al. Evidence for recent climate change from ice cores in the central Himalayas. Ann Glaciol, 2000, 31: 153–158Google Scholar
  2. 2.
    Qin D, Hou S, Zhang D, et al. Preliminary results from the chemical records of an 80.4 m ice core recovered from East Rongbuk Glacier, Qomolangma (Mount Everest). Ann Glaciol, 2002, 35: 278–284Google Scholar
  3. 3.
    Reng J, Qin D, Kang S, et al. Glacier variations and climate warming and drying in the central Himalayas. Chin Sci Bull, 49(1): 65–69Google Scholar
  4. 4.
    Hou S, Qin D, Wake C P, et al. Changes in net accumulation from ice core records in Mt. Everest and its climatological significance. Chin Sci Bull, 1999, 44(21): 2336–2342Google Scholar
  5. 5.
    Kang S, Qin D, Mayewski P A, et al. Climatic and environmental records from the Far East Rongbuk ice core, Mt. Qomolangma (Everest). Episodes, 2001, 24(3): 176–181Google Scholar
  6. 6.
    Kang S, Mayewski P A, Qin D, et al. Twentieth century increase of atmospheric ammonia recorded in Mt. Everest ice core. J Geophys Res, 2002, 107(D21), 45957CrossRefGoogle Scholar
  7. 7.
    Expedition of Qinghai-Tibet Plateau, Chinese Academy of Science. Tibet Algae (in Chinese). Beijing: Science press, 1992. 509Google Scholar
  8. 8.
    Expedition of Qinghai-Tibet Plateau, Chinese Academy of Science. Tibet Flugi (in Chinese). Beijing: Science Press, 1992. 226Google Scholar
  9. 9.
    Xiong K, Tang X, Xie S. Yeast isolated from snow at Tibet. J Microbio (in Chinese), 1999, 19(2): 58–62Google Scholar
  10. 10.
    Baghela V S, Tripathia R D, Ramtekeb P W, et al. Psychrotrophic proteolytic bacteria from cold environment of Gangotri glacier, Western Himalaya, India. Enzyme Microb Technol, 2005, 36: 654–659CrossRefGoogle Scholar
  11. 11.
    Yoshitaka Y, Shiro K, Shuji O. A community of snow algae on a Himalayan glacier: Change of algal biomass and community structure with altitude. Arct Alp Res, 1997, 29(1): 126–137CrossRefGoogle Scholar
  12. 12.
    Yao T, Xiang S, Zhang X, et al. Microbiological characteristics recorded by Manlan and Puruogangri ice core. Quaternary Sci (in Chinese), 2003, 23: 193–199Google Scholar
  13. 13.
    Xiang s, Yao T, An L, et al. Change of bacterial community in the Malan Ice Core and its relation to climate and environment. Chin Sci Bull, 2004, 49(17): 1869–1875CrossRefGoogle Scholar
  14. 14.
    Zhang X, Ma X, Yao T, et al. Diversity of 16S rDNA and environmental factor influencing microorganisms in Malan ice core. Chin Sci Bull, 2003, 48(11): 1146–1150CrossRefGoogle Scholar
  15. 15.
    Xiang S, Yao T, An L, et al. 16S rRNA sequences and differences in bacteria isolated from the Muztag Ata Glacier at increasing depths. Sci China Ser D-Earth Sci, 2005, 35(3): 252–262Google Scholar
  16. 16.
    Kemp P F, Aller J Y. Bacterial diversity in aquatic and other environments: What 16S rDNA libraries can tell us. FEMS Microbiol Ecol, 2004, 47:161–177CrossRefGoogle Scholar
  17. 17.
    Maidak B L, Cole J R, Lilburn T G, et al. The RDP-II (Ribosomal Database Project). Nucleic Acids Res, 2001, 29: 173–174CrossRefGoogle Scholar
  18. 18.
    Tian L, Yao T, Schuster P F, et al. δ18O concentrations in recent precipitation and ice cores on the Tibetan Plateau. J Geophys Res, 2003, 108(D9), 4293CrossRefGoogle Scholar
  19. 19.
    Tian L, Yao T, Zhang X. δ18O in precipitation and moisture sources upon the Tibetan Plateau. Cryosphere, 1996, 21, 33–39Google Scholar
  20. 20.
    Tian L, Yao T, White J W, et al. Westerly moisture transport to the middle of Himalayas revealed from the high deuterium excess. Chin Sci Bull, 2005, 50(10): 1026–1030CrossRefGoogle Scholar
  21. 21.
    Christner B C, Mosley-Thompson E, Thompson L G, et al. Recovery and identification of viable bacteria immured in glacial ice. Icarus, 2000, 144(2): 479–485CrossRefGoogle Scholar
  22. 22.
    Liu K, Yao Z, Thompson L G. A pollen record of Holocene climate changes from the Dunde ice cap, Qinghai-Tibetan Plateau. Geology, 1998, 26: 135–138CrossRefGoogle Scholar
  23. 23.
    Takabiro S, Koji M, Kazunari U, et al. Seasonal change in bacterial flora and biomass in mountain snow from the Tateyama Mountains, Japan, analyzed by 16S rRNA gene sequencing and Real-Time PCR. Appl Environ Microb, 2005, 71(1): 123–130CrossRefGoogle Scholar
  24. 24.
    Sarma P M, Bhattacharya D, Krishnan S. Degradation of polycyclic aromatic hydrocarbons by a newly discovered enteric bacterium, Leclercia adecarboxylata. Appl Environ Microb, 2004, 3163–3166Google Scholar
  25. 25.
    Peter P S, Miteva V I, Brenchley J E. Phylogenetic analysis of anaerobic psychrophilic enrichment cultures obtained from a Greenland glacier ice core. Appl Environ Microb, 2003, 69(4): 2153–2160CrossRefGoogle Scholar
  26. 26.
    David J S, Jackie M A, Caroline E B, et al. Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMS Microbiol Ecol, 2005, 53: 141–155CrossRefGoogle Scholar
  27. 27.
    Xie S, Yao T, Kang S, et al. Geochemical analyses of a Himalayan snowpit profile: Implications for atmospheric pollution and climate. Org Geochem, 2000, 31: 15–23CrossRefGoogle Scholar
  28. 28.
    Ali O B, Sabriye D, Zihni D. Anoxybacillus gonensis sp. nov., a moderately thermophilic, xylose-utilizing, endospore-forming bacterium. Int J Syst Evol Micr, 2003, 53: 1315–1320CrossRefGoogle Scholar
  29. 29.
    Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium Novosphingobium and Sphingopyxis on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Micr, 2001, 51: 1405–1417Google Scholar
  30. 30.
    Hans J B, Ewald B M, Denner S B. Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov. air-and dustborne and Antarctic, orangepigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Micr, 2003, 53: 1253–1260CrossRefGoogle Scholar
  31. 31.
    Gardan L, Dauga C, Prior P. Acidovorax anthurii sp. nov., a new phytopathogenic bacterium which causes bacterial leaf-spot of anthurium. Int J Syst Evol Micr, 2000, 50: 235–246Google Scholar
  32. 32.
    Moran M A, González J M, Kiene R P. Linking a bacterial taxon to sulfur cycling in the sea: Studies of the marine Roseobacter group. Geomicrobiology Journal, 2003, 20: 375–388CrossRefGoogle Scholar
  33. 33.
    Byung-Chun K, Ja Ryeong P, Jin-Woo B. Stappia marina sp. nov., a marine bacterium isolated from the Yellow Sea. Int J Syst Evol Micr, 2006, 56:75–79CrossRefGoogle Scholar
  34. 34.
    Finneran K T, Johnsen C V, Lovley D R. Rhodeferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of FE(III). Int J Syst Evol Micr, 2003, 53: 669–673CrossRefGoogle Scholar
  35. 35.
    Crump B C, Hobbie J E. Synchrony and seasonality in bacterioplankton communities of two temperate rivers. Limnol Oceanogr, 2005, 50(6): 1718–1729CrossRefGoogle Scholar
  36. 36.
    Brenner D J, Hollis D G, Moss C W, et al. Proposal of Afipia gen. nov., with Afipia felis sp. nov. (formerly the cat scratch disease bacillus), Afipia clevelandensis sp. nov. (formerly the Cleveland Clinic Foundation strain), Afipia broomeae sp. nov., and three unnamed genospecies. J Clin Microbiol, 1991, 29: 2450–2460Google Scholar
  37. 37.
    Natascha S, Meinhard S, Thorsten B. A newly discovered Roseobacter cluster in temperate and polar oceans. Nature, 2004, 427(29): 445–448Google Scholar
  38. 38.
    Irgens R L, Gosink J J, Staley J. Polaromonas vacuolata gen. nov., sp. nov., a psychrophilic, marine, gas vacuolate bacterium from Antarctica. Int J Syst Evol Micr, 1996, 46(3): 822–826CrossRefGoogle Scholar
  39. 39.
    Raguenes G, Peres A, Ruimy R, et al. Alteromonas infernus sp. nov., a new polysaccharide producing bacterium isolated from a deepsea hydrothermal vent. J Appl Bacteriol, 1997, 82: 422–430Google Scholar
  40. 40.
    Hugenholtz P, Tyson G W, Webb R I. Investigation of Candidate Division TM7, a recently recognized major lineage of the domain bacteria with no known pure-culture representatives. Appl Environ Microb, 2001, 67: 411–419CrossRefGoogle Scholar

Copyright information

© Science in China Press 2006

Authors and Affiliations

  • Liu Yongqin 
    • 1
  • Yao Tandong 
    • 1
    • 2
  • Kang Shichang 
    • 1
    • 2
  • Jiao Nianzhi 
    • 3
  • Zeng Yonghui 
    • 3
  • Shi Yang 
    • 3
  • Luo Tingwei 
    • 2
  • Jing Zhefang 
    • 2
  • Huang Shijun 
    • 3
  1. 1.Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
  2. 2.Key Laboratory of Cryosphere and EnvironmentChinese Academy of SciencesLanzhouChina
  3. 3.National Key Laboratory for Marine Environmental SciencesXiamen UniversityXiamenChina

Personalised recommendations