Chinese Science Bulletin

, Volume 51, Issue 6, pp 723–730 | Cite as

Dust storm in Asia continent and its bio-environmental effects in the North Pacific: A case study of the strongest dust event in April, 2001 in central Asia

  • Han Yongxiang 
  • Fang Xiaomin Email author
  • Xi Xiaoxia 
  • Song Lianchun 
  • Yang Shengli 


Testing the effects of iron fertilization in booming metabolism of microbes in North Pacific Ocean has become an important hot topic in current global climate change study. The first supportive evidence with natural iron inputs to ocean was obtained by Bishop and his colleagues at the PAPA region in North Pacific Ocean. They found a rapid increase of marine phytoplankton over North Pacific Ocean after a strong dust storm in April 2001. We demonstrate that the dust deposition flux during this dust storm period decreases exponentially with increasing distance from the dust source regions along the dust transport pathway, through integration of synoptic dynamics, changes of TOMS-Al (aerosol index) and surface PM10 values along the dust pathway and changes of particulate organic carbon and chlorophyll in surface oceans. This strong dust storm may result in deposition of about 3.1–5.8 µg/m3 eolian iron into the PAPA region in North Pacific Ocean, thus causing a rapid increase of marine phytoplankton productivity observed by Bishop and his colleagues. This work supplies more direct and detailed evidence, from continental dust process, to support the iron hypothesis with natural iron inputs to the surface oceans through dust storms.


North Pacific Ocean hypothesis of iron fertilization long-distance dust transport dust fluxes bio-environmental effects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Martin, J. H., Glacial-interglacial CO2 change: The iron hypothesis, Paleoceanography, 1990, 5: 1–13.Google Scholar
  2. 2.
    Coale, K. H., Johnson, K. S., Fitzwater, S. E. et al., A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean, Nature, 1996, 383: 495–501.CrossRefGoogle Scholar
  3. 3.
    Watson, A. J., Bakker, D. C. E., Ridgwell, A. J. et al., Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2, Nature, 2000, 407: 730–733.CrossRefGoogle Scholar
  4. 4.
    Duce, R. A., Unni, C. K., Ray, B. J. et al., Long-range atmospheric transport of soil dust from Asia to the tropical North Pacific: Temporal variability, Science, 1980, 209: 1522–1524.Google Scholar
  5. 5.
    Petit, J. R., Jouzel, J., Raynaud, D. et al., Climate and atmospheric history of the past 420000 years from the Vostok ice core, Antarctica, Nature, 1999, 339: 429–436.Google Scholar
  6. 6.
    Ridgwell, A.J., Feedback in the earth system: the biogeochemical linking of land, air and sea, IGBP ‘Global Change’ Newsletter, 2002, 360: 2905–2924.Google Scholar
  7. 7.
    Ridgwell, A. J., Implications of the global CO2 “Iron hypothesis” for Quaternary climate change, Geochemistry, Geophysics, Geosystems, 2003, 4(9), 1076, doi: 10.1029/2003GC000563.CrossRefGoogle Scholar
  8. 8.
    Bishop, J. K. B., Davis, R. E., Sherman, J. T., Robotic Observations of Dust Storm enhancement of Carbon Biomass in the North Pacific, Science, 2002, 298: 817–821.CrossRefGoogle Scholar
  9. 9.
    Jaffe, D., Snow, J., Cooper, O., The 2001 Asian dust events: transport and impact on surface aerosol concentrations in the U.S., EOS, 2003, 84(46): 501–516.Google Scholar
  10. 10.
    Merrill, J. T., Uematsu, M., Bleck, R., Meteorological analysis of long range transport of mineral aerosol over the North Pacific, J. Geophys. Res., 1989, 94: 8584–8598.Google Scholar
  11. 11.
    Zhang, X. Y., Gong, S. L., Shen, Z. X., Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 1. Network observations, J. Geophys. Res. 2003, 108(D9), doi: 10.1029 /2002 JD002632.Google Scholar
  12. 12.
    Gong, S. L., Zhang, X. Y., Zhao, T. L. et al., Characterization of soil dust aerosol in China and its transport/distribution during 2001 ACE-Asia 2. Model Simulation and Validation, J. Geophys. Res., 2003, 108,(D9): 4262. doi: 10.1029/2002JD002633.CrossRefGoogle Scholar
  13. 13.
    Herman, J., Bhartia, P., Torres, O. et al., Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data, J. Geophys. Res., 1997, 102: 16911–16922.Google Scholar
  14. 14.
    Zhao, T. L., Gong S. L., Zhang, X.Y. et al., Modeled size-segregated wet and dry deposition budgets of soil dust aerosol during ACE-Asia, 2001: Implications for trans-Pacific transport, J. Geophys. Res., 2003, 108(D23), 8655, doi: 10.1029/2002JD003363.CrossRefGoogle Scholar
  15. 15.
    Han Yongxiang, Zhao Tianliang, Song Liangchun et al., The Dust Spatial Distribution Characteristic in spring and North Pacific region: observation and simulation, China Environmental Science (in Chinese with English abstract), 2005, 25(3): 257–261.Google Scholar
  16. 16.
    Chung, Y. S., Kim, H. S., Han, K. Y. et al., On east Asian sand and duststorms and associated significant dustfall observed from January to May 2001, Water, Air, and Soil Pollution, 2003, Focus 3: 259–277.Google Scholar
  17. 17.
    Rea, D. K., Hovan, S. A., Grain size distribution and depositional processes of the mineral component of abyssal sediments: Lessons from the North Pacific, Paleoceanography, 1995, 10: 251258.CrossRefGoogle Scholar
  18. 18.
    Gao Yuan, Fan Songmiao, Sarmiento J. L., Aeolian iron input to the ocean through precipitation scavenging: A modeling perspective and its implication for natural iron fertilization in the ocean, J. Geophys. Res., 2003, 108(D7):, 4221, doi: 10.1029/ 2002JD002420.CrossRefGoogle Scholar
  19. 19.
    Wells, M. L., Price, N. M., Bruland, K. W., Iron chemistry in seawater and its relationship to phytoplankton: A workshop report, Mar. Chem., 1995, 48: 157–185.CrossRefGoogle Scholar
  20. 20.
    Zhuang, G., Yi, Z., Duce, R. A., Chemistry of iron in marine aerosols, Glob. Biogeochem. Cyc., 1992, 6: 161–173.Google Scholar
  21. 21.
    Colin, J. L., Jaffrezo, J. L., Gros, J. M., Solubility of major species in precipitation: factors of variation, Atmos. Environ., 1990, 23: 537–544.Google Scholar
  22. 22.
    Zhuang, G., Yi, Z., Wallace, G. T., Iron (II) in rainwater, snow, and surface seawater from a coastal environment, Mar. Chem., 1995, 50: 41–50.CrossRefGoogle Scholar
  23. 23.
    Siefert, R. L., Johansen, A. M., Hoffmann, M. R., Chemical characterization of ambient aerosol collected during the southwest monsoon and intermonsoon seasons over the Arabian Sea: Labile-Fe(II) and other trace metals, J. Geophys. Res. 1999, 104: 9423–9444.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2006

Authors and Affiliations

  • Han Yongxiang 
    • 1
    • 2
  • Fang Xiaomin 
    • 1
    • 3
    Email author
  • Xi Xiaoxia 
    • 3
  • Song Lianchun 
    • 2
  • Yang Shengli 
    • 1
  1. 1.Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
  2. 2.Lanzhou Arid Meteorological Institute of ChinaMeteorological Bureau of ChinaLanzhouChina
  3. 3.Key Laboratory of Western China’s Environmental Systems (Ministry of Education of China) & College of Resources and EnvironmentLanzhou UniversityLanzhouChina

Personalised recommendations