Chinese Science Bulletin

, Volume 51, Issue 4, pp 417–420 | Cite as

Mapping of the rice (Oryza sativa L.) thermo-sensitive genic male sterile gene tms5 with EST and SSR markers

  • Jiang Dagang 
  • Lu Sen 
  • Zhou Hai 
  • Wu Xiaojin 
  • Zhuang Chuxiong 
  • Liu Yaoguang 
  • Mei Mantong 
Articles

Abstract

With the cDNA suppression subtraction hybridization method, a spikelet-specific cDNA library was constructed that expressed at meiosis stage in rice. A total of 121 cDNA fragments were selected from the library and used as EST (expressed sequence tags) markers to detect the polymorphism between Annong N, a normal fertile Indica rice line and Annong S-1, its spontaneous mutant with thermo-sensitive genic male sterility, using the RFLP (restriction fragment length polymorphism) technique. HN57, one of the EST probes, could detect polymorphism between them. The results of segregation analysis with the F2 population developed from Annong S-1 and Annong N indicate that HN57 co-segregates with the thermo-sensitive genic male-sterility controlled by tms5, the recessive gene in Annong S-1. This marker is located on the 31.2-cM region of the chromosome 2 of RGP (rice genome research program) genetic map. To further determine the location of tms5, 80 SSR (simple sequence repeat) markers around this region were developed, and 12 of them were polymorphic. And finally, the tms5 was mapped within region of 181 kb by using these new markers.

Keywords

Oryza sativaAnnong S-1 thermo-sensitive genic male sterile gene tms5 fine mapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, B., Xu, W. W., Wang, J. Z. et al., Tagging and mapping the thermo-sensitive genic male-sterile gene in rice with molecular markers, Theor. Appl. Genet., 1995, 91: 1111–1114.Google Scholar
  2. 2.
    Yamagushi, Y., Ikeda, R., Hirasawa, H. et al., Linkage analysis of the thermo-sensitive genic male sterility gene tms2 in rice (Oryza sativa L.), Breed Sci., 1997, 47: 371–377.Google Scholar
  3. 3.
    Subudhi, P. K., Borkakati, R. K., Virmani, S. S. et al., Molecular mapping of a thermo-sensitive genetic male sterility gene in rice using bulked segregant analysis, Genome, 1997, 40: 188–194.Google Scholar
  4. 4.
    Dong, N. V., Subudhi, P. K., Luong, P. N. et al., Molecular mapping of a rice gene conditioning thermo-sensitive genic male sterility using AFLP, RFLP and SSR techniques, Theor. Appl. Genet., 2000, 100: 727–734.CrossRefGoogle Scholar
  5. 5.
    Wang, Y. G., Xing, Q. H., Deng, Q. Y. et al., Fine mapping of the rice thermo-sensitive genic male-sterile gene tms5, Theor. Appl. Genet., 2003, 107(5): 917–921.CrossRefGoogle Scholar
  6. 6.
    Lee, D. S., Chen, L. J., Suh, H. S., Genetic characterization and fine mapping of a novel thermo-sensitive genic male-sterile gene tms6 in rice (Oryza sativa L.), Theor. Appl. Genet., 2005, 111(7): 1271–1277.CrossRefGoogle Scholar
  7. 7.
    Koh, H. J., Son, Y. H., Heu, M. H. et al., Molecular mapping of a new genic male-sterility gene causing chalky endosperm in rice (Oryza sativa L.), Euphytica, 1999, 106: 57–62.CrossRefGoogle Scholar
  8. 8.
    Deng, H. F., Shu, F. B., Yuan, D. Y., An overview of research and utilization of AnnongS-1, Hybrid Rice, 1999, 14(3): 1–3.Google Scholar
  9. 9.
    Diatochenko, L., Lau, Y. F., Campbell, A. P. et al., Suppression Subtractive Hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries, Proc. Natl. Acad. Sci. USA, 1996, 93(12): 6025–6030.Google Scholar
  10. 10.
    Zhuang, C. X., Zee, S. Y., Lu, Y. G. et al., Molecular cloning cDNA related to rice pollen development using the suppress subtractive hybridization, Chinese Science Bulletin, 1999, 44(17): 1842–1846.Google Scholar
  11. 11.
    McCouch, S. R., Kochert, G., Yu, Z. H. et al., Molecular mapping of rice chromosomes, Theor. Appl. Genet., 1988, 76: 815–829.CrossRefGoogle Scholar
  12. 12.
    Akaji, H., Yokozeki, Y., Inagaki, A. et al., Micron, a microsatellite-targeting transposable element in the rice genome, Mol. Genet. Genomics, 2001, 266(3): 471–480.Google Scholar
  13. 13.
    Xu, S. B., Tao, Y. F., Yang, Z. Q. et al., A simple and rapid methods used for silver staining and gel preservation, Hereditas, 2002, 24: 336–336.Google Scholar
  14. 14.
    Zhang, Q. F., Shen, B. Z., Dai, X. K. et al., Using bulked extremes and recessive classes to map genes for photoperiod-sensitive genic sterility in rice, Proc. Natl. Acad. Sci. USA, 1994, 91: 8675–8679.Google Scholar

Copyright information

© Science in China Press 2006

Authors and Affiliations

  • Jiang Dagang 
    • 1
  • Lu Sen 
    • 1
  • Zhou Hai 
    • 1
  • Wu Xiaojin 
    • 2
  • Zhuang Chuxiong 
    • 2
  • Liu Yaoguang 
    • 1
  • Mei Mantong 
    • 1
  1. 1.Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Province, College of Life SciencSouth China Agricultural UniversityGuangzhouChina
  2. 2.National Hybrid Rice Engineering and Technique Research CenterChangshaChina

Personalised recommendations