Chinese Science Bulletin

, Volume 51, Issue 3, pp 257–268 | Cite as

An overview of adakite petrogenesis

  • Paterno R. Castillo


The term adakite was originally proposed to define silica-rich, high Sr/Y and La/Yb volcanic and plutonic rocks derived from melting of the basaltic portion of oceanic crust subducted beneath volcanic arcs. It was also initially believed that adakite only occurs in convergent margins where young and thus still hot oceanic slabs are being subducted, but later studies have proposed that it also occurs in other arc settings where unusual tectonic conditions can lower the solidus of older slabs. Currently, adakite covers a range of arc rocks ranging from pristine slab melt, to adakite-peridotite hybrid melt, to melt derived from peridotite metasomatized by slab melt. Adakite studies have generated some confusions because (1) the definition of adakite combines compositional criteria with a genetic interpretation (melting of subducted basalt), (2) the definition is fairly broad and relies on chemistry as its distinguishing characteristic, (3) the use of high pressure melting experiment results on wet basalts as unequivocal proofs of slab melting and (4) the existence of adakitic rocks with chemical characteristics similar to adakites but are clearly unrelated to slab melting. Other studies have shown that adakitic rocks and a number of the previously reported a dakites are produced through melting of the mafic lower crust or ponded basaltic magma, high-pressure crystal fractionation of basaltic magma and low-pressure crystal fractionation of basaltic magma plus magma mixing processes in both arc or non-arc tectonic environments. Despite the confusing interpretations on the petrogenesis of adakite and adakitic rocks, their investigations have enriched our understanding of material recycling at subduction zones, crustal evolutionary processes and economic mineralization.


adakite slab melting metasomatism eclogite amphibolite Archean TTG magnesian andesite high-Nb basalt subduction zone arc magmatism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Defant, M. J., Drummond, M. S., Derivation of some modern arc magmas by melting of young subducted lithosphere, Nature, 1990, 347: 662–665.CrossRefGoogle Scholar
  2. 2.
    Drummond, M. S., Defant, M. J., A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archaean to modern comparisons, J. Geophys. Res., 1990, 95: 21503–21521.Google Scholar
  3. 3.
    Martin, H., Adakitic magmas: modern analogues of Archaean granitoids, Lithos, 1999, 46: 411–429.CrossRefGoogle Scholar
  4. 4.
    Smithies, R. H., The Archean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite, Earth Planet. Sci. Lett., 2000, 182: 115–125.CrossRefGoogle Scholar
  5. 5.
    Kamber, B. S., Ewart, A., Collerson, K. D., Bruce, M. C. et al., Fluid-mobile trace element constraints on the role of slab melting and implications for Archean crustal growth models, Cont. Mineral. Petrol., 2002, 144: 38–56.Google Scholar
  6. 6.
    Condie, K. C., TTGs and adakites: are they both slab melts? Lithos, 2005, 80: 33–44.CrossRefGoogle Scholar
  7. 7.
    Rollinson, H., Martin, H., Geodynamic controls on adakite, TTG and sanukitoid genesis: implications for models of crust formation, Introduction to the Special Issue, Lithos, 2005, 79: ix–xii.Google Scholar
  8. 8.
    Thiéblemont, D., Stein, G., Lescuyer, J. L., Epithermal and porphyry deposits: The adakite connection, Comptes Rendus de l’Académie des Sciences, Paris, 1997, 325: 103–109.Google Scholar
  9. 9.
    Sajona, F. G, Maury, R. C., Association of adakites with gold and copper mineralization in the Philippines, Comptes Rendus de l’Académie des Sciences, Paris, 1998, 326: 27–34.Google Scholar
  10. 10.
    Defant, M. J., Kepezhinskas, P., Evidence suggests slab melting in arc magmas, EOS, 2001, 82: 62–70.Google Scholar
  11. 11.
    Oyarzún, R., Márquez, A., Lillo, J. et al., Giant vs small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic vs normal calc-alkaline magmatism, Mineral, Deposita, 2001, 36: 794–798.Google Scholar
  12. 12.
    Mungall, J. E., Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits, Geology, 2002, 30: 915–918.CrossRefGoogle Scholar
  13. 13.
    Armstrong, R. L., A model for the evolution of strontium and lead isotopes in a Dynamic Earth, Rev. Geophys., 1968, 6: 175–199.Google Scholar
  14. 14.
    Nicholls, A., Ringwood, A. E., Effect of water on olivince stability in tholeiites and the production of silica-saturate magmas in the island arc environment, J. Geol., 1973, 81: 285–300.Google Scholar
  15. 15.
    Sekine, T., Wyllie, P. J., Phase relationships in the system KA1-SiO4-SiO2-H2O as a model for hybridization between hydrous siliceous melts and peridotite, Contrib. Mineral. Petrol., 1982, 79: 368–374.CrossRefGoogle Scholar
  16. 16.
    Marsh, B. D., Some Aleutian andesites: their nature and source, J. Geol, 1976, 84: 27–45.Google Scholar
  17. 17.
    Brophy, J. G., Marsh, B. D., On the origin of high-alumina arc basalt and the mechanics of melt extraction, J. Petrol., 1986, 27: 763–789.Google Scholar
  18. 18.
    Davidson, J. P., Deciphering mantle and crustal signatures in subduction zone magmatism, in, Subduction: Top to Bottom (eds. Bebout, G. E. et al.), Am. Geophys. U. Geophys. Mono., 1996, 96: 251–262.Google Scholar
  19. 19.
    Tatsumi, Y., Hamilton, D. L., Nesbitt, R. W., Chemical characteristics of fluid phase from the subducted lithosphere: evidence from high-pressure experiments and natural rocks, J. Volcanol. Geotherm. Res., 1986, 29: 293–309.CrossRefGoogle Scholar
  20. 20.
    Gill, J. B., Orogenic Andesites and Plate Tectonics, Berlin, Springer-Verlag, 1981, 358.Google Scholar
  21. 21.
    Hawkesworth, C. J., Gallagher, K., Hergt, J. M. et al., Mantle and slab contributions in arc magmas, Ann. Rev. Earth Planet. Sci., 1993, 21: 175–204.Google Scholar
  22. 22.
    Perfit, M. R., Gust, D. A., Bence, A. E. et al., Chemical characteristics of island arc basalts: implications for mantle sources, Chem. Geol., 1980, 30: 227–256.CrossRefGoogle Scholar
  23. 23.
    Woodhead, J., Eggins, S., Gamble, J., High field strength and transition element systematics in island and back-arc basin basalts: evidence for multi-phase extraction and a depleted mantle wedge, Earth Planet. Sci. Lett., 1993, 114: 491–504.CrossRefGoogle Scholar
  24. 24.
    Othman, D. B., White, W. M., Patchett, J., Geochemistry of marine sediments, island arc magma genesis and crust-mantle recycling, Earth Planet. Sci. Lett., 1989, 94: 1–21.Google Scholar
  25. 25.
    Elliot, T., Plank, T., Zindler, A. et al., Element transport from slab to volcanic front at the Mariana arc, J. Geophys. Res., 1997, 102: 14991–15019.Google Scholar
  26. 26.
    Plank, T., Langmuir, C., The chemical composition of subducting sediment and its consequences fro the crust and mantle, Chem. Geol., 1998, 145: 325–394.CrossRefGoogle Scholar
  27. 27.
    Kay, R. W., Aleutian magnesian andesites: melts from subducted Pacific Ocean crust, J. Volcanol. Geotherm. Res., 1978, 4: 117–132.CrossRefGoogle Scholar
  28. 28.
    Condie, K. C., Swenson, D. H., Compositional variations in three Cascade stratovolcanoes: Jefferson, Rainier and Shasta, Bull. Volcanol., 1973, 37: 205–320.Google Scholar
  29. 29.
    Lopez-Escobar, L., Petrology and chemistry of volcanic rocks of the Southern Andes, in Andean Magmatism, Chemical and Isotopic Constraints (eds. Harmon R. S., Barreiro, B. A.), Shiva Geology Series, 1984, 47–71.Google Scholar
  30. 30.
    Saunders, A. D., Rogers, G., Marriner, G. F. et al., Geochemistry of Cenozoic volcanic rocks, Baja California, Mexico: Implications for the petrogenesis of post-subduction magmas, J. Vol. Geotherm. Res., 1987, 32: 223–245.Google Scholar
  31. 31.
    Defant, M. J., Richerson, M., De Boer, J. Z. et al., Dacite genesis via both slab melting and differentiation: petrogenesis of La Yeguada volcanic complex, Panama. J. Petrol., 1991, 32: 1101–1142.Google Scholar
  32. 32.
    Defant, M. J., Jackson, T. E., Drummond, M. S. et al., The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an overview, J. Geol. Soc., 1992, 149: 569–579.Google Scholar
  33. 33.
    Sajona, F. G., Maury, R. C., Bellon, H. et al., Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines, Geology, 1993, 21: 1007–1010.CrossRefGoogle Scholar
  34. 34.
    Sajona, F. G., Bellon, H., Maury, R. C. et al., Magmatic response to abrupt changes in geodynamic settings: Pliocene-Quaternary calc-alkaline lavas and Nb enriched basalts of Leyte and Mindanao (Philippines), Tectonophys., 1994, 237: 47–72.CrossRefGoogle Scholar
  35. 35.
    Drummond, M. S., Defant, M. J., Kepezhinskas, P. K., The petrogenesis of slab derived trondhjemite-tonalite-dacite adakite magmas, Trans. R. Soc. Edinburgh: Earth Sci., 1996, 87: 205–216.Google Scholar
  36. 36.
    Kepezhinskas, P. K., Defant, M. J., Drummond, M. S., Na-metasomatism in the island arc mantle by slab melt-peridotite interaction: evidence from mantle xenoliths in the north Kamchatka arc, J. Petrol., 1995, 36: 1505–1527.Google Scholar
  37. 37.
    Castillo, P. R., Janney, P. E., Solidum, R., Petrology and geochemistry of Camiguin Island, southern Philippines: insights into the source of adakite and other lavas in a complex arc tectonic setting, Contrib. Mineral. Petrol., 1999, 134: 33–51.CrossRefGoogle Scholar
  38. 38.
    Atherton, M. P., Petford, N., Generation of sodium-rich magmas from newly underplated basaltic crust, Nature, 1993, 362: 144–146.CrossRefGoogle Scholar
  39. 39.
    Arculus, R. J., Lapierrre, H., Jaillard, E., Geochemical window into subduction and accretion processes: Raspas metamorphic complex, Ecuador, Geology, 1999, 27: 547–550.Google Scholar
  40. 40.
    Yumul, G. P. Jr., Dimalanta, C. B., Faustino, D. V. et al., Silicic arc volcanism and lower crust melting: an example from the central Luzon, Philippines, J. Geol., 1999, 154: 13–14.Google Scholar
  41. 41.
    Xu, J., Shinjio, R., Defant, M. J. et al., Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology, 2002, 12: 1111–1114.Google Scholar
  42. 42.
    Macpherson, C. G., Dreher, S. T., Thirwall, M. F., Adakites without slab melting: high pressure processing of basaltic island arc magma, Mindanao, the Philippines, Earth Planet. Sci. Lett., in press.Google Scholar
  43. 43.
    Beard, J. S., Lofgren, G. E., Effect of water on the composition of partial melts of greenstones and amphibolites, Science, 1989, 144: 195–197.Google Scholar
  44. 44.
    Beard, J. S., Lofgren, G. E., Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3 and 6.9 kb., J. Petrol., 1991, 32: 465–501.Google Scholar
  45. 45.
    Rapp, R. P., Watson, E. B., Miller, C. F., Partial melting of amphibolite, eclogite and the origin of Archaean trondhjemites and tonalites, Precambrian Res., 1991, 51: 1–25.CrossRefGoogle Scholar
  46. 46.
    Rushmer, T., Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions, Contrib. Mineral. Petrol., 1991, 107: 41–59.Google Scholar
  47. 47.
    Winther, T. K., Newton, R. C., Experimental melting of anhydrous low-K tholeiite: evidence on the origin of Archaean cratons, Bull. Geol. Soc. Den., 1991, 39.Google Scholar
  48. 48.
    Wolf, M. B., Wyllie, P. J., Dehydration-melting of solid amphibolite at 10 kbar: textural development, liquid interconnectivity and applications to the segregation of magmas, Contrib. Mineral. Petrol., 1991, 44: 151–179.Google Scholar
  49. 49.
    Sen, C., Dunn, T., Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites, Contrib. Mineral. Petrol., 1994, 117: 394–409.CrossRefGoogle Scholar
  50. 50.
    Schiano, P., Clochiatti, R., Shimizu, N. et al., Hydrous, silica-rich melts in the sub-arc mantle and their relationships with erupted arc lavas, Nature, 1995, 377: 595–600.CrossRefGoogle Scholar
  51. 51.
    Sorensen, S. S., Petrology of amphibolite-facies mafic and ultramafic rocks from Catalina schist, southern California: metamorphism and migmatisation in a subduction zone metamorphic setting, J. Met. Geol., 1988, 6: 405–435.Google Scholar
  52. 52.
    Sorensen, S. S., Barton, M. D., Metasomatism and partial melting in a subduction complex: Catalina schist, southern California, Geology, 1987, 15: 115–118.CrossRefGoogle Scholar
  53. 53.
    Sorensen, S. S., Grossman, J. N., Enrichment in trace elements in garnet amphibolites from a paleo-subduction zone: Catalina schist, southern California, Geochim. Cosmochim. Acta, 1989, 53: 3155–3177.CrossRefGoogle Scholar
  54. 54.
    Bebout, G. E., Barton, M. D., Metasomatism during subduction: products and possible paths in the Catalina schist, California, Chem. Geol., 1993, 108: 61–92.CrossRefGoogle Scholar
  55. 55.
    Yogodzinski, G. M., Kelemen, P. B., Slab melting in the Aleutians: Implication of an ion probe study of clinopyroxene in primitive adakite and basalt, Earth Planet. Sci. Lett., 1998, 158: 53–65.CrossRefGoogle Scholar
  56. 56.
    Peacock, S. M., Rushmer, T., Thompson, A. B., Partial melting of subducting oceanic crust, Earth Planet. Sci. Lett., 1994, 121: 227–244.CrossRefGoogle Scholar
  57. 57.
    Tatsumi, Y., Ishizaka, K., Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan, I. Petrographical and chemical characteristics, Earth Planet. Sci. Lett., 1982, 60: 293–304.Google Scholar
  58. 58.
    Tatsumi, Y., Geochemical modeling of partial melting of subducting sediments and subsequent melt-mantle interaction: generation of high-Mg andesites in the Setouchi volcanic belt, Southern Japan, Geology, 2001, 29: 323–326.CrossRefGoogle Scholar
  59. 59.
    Rogers, G., Saunders, A., Magnesian andesites from Mexico, Chile and the Aleutian Islands: implications for magmatism associated with ridge-trench collision, in Boninites (ed. Crawford, A.J.), Unwin Hyman, London, 1989, 416–445.Google Scholar
  60. 60.
    Smith, D. R., Leeman, W. P., Petrogenesis of Mount St. Helens dacitic magmas, J. Geophys. Res., 1987, 92: 10313–10334.Google Scholar
  61. 61.
    Sajona, F. G, Maury, R. C., Pubellier, M. et al., Magmatic source enrichment by slab-derived melts in a young post-collision setting, central Mindanao (Philippines), Lithos, 2000, 54: 173–206.CrossRefGoogle Scholar
  62. 62.
    Yogodzinski, G. M., Lees, J. M., Churikova, T. G. et al., Geochemical evidence for the melting of subducting oceanic lithosphere at plates edges, Nature, 2001, 409: 500–504.CrossRefGoogle Scholar
  63. 63.
    Calmus, T., Aguillon-Robles, A., Maury, R. C. et al., Spatial and temporal evolution of basalts and magnesian andesites (bajaites) from Baja California, Mexico: the role of slab melts, Lithos, 2003, 66: 77–105.CrossRefGoogle Scholar
  64. 64.
    Gutscher, M.-A., Maury, F., Eissen, J.-P. et al., Can slab melting be caused by flat subduction? Geology, 2000, 28: 535–538.CrossRefGoogle Scholar
  65. 65.
    Beate, B., Monzier, M., Spikings, R. et al., Mio-Pliocene adakite generation related to flat subduction in southern Ecuador: the Quimsacocha volcanic center, Earth Planet. Sci. Lett., 2001, 192: 561–570.CrossRefGoogle Scholar
  66. 66.
    Bourdon, E., Eissen, J.-P., Monzier, M. et al., Adakite-like lavas from Antisana volcano (Ecuador): Evidence from slab melt metasomatism beneath the Andean Northern volcanic zone, J. Petrol., 2002, 43: 99–217.CrossRefGoogle Scholar
  67. 67.
    Xu, J., Wang, Q., Yu, X.Y., Geochemistry of high-magnesian andesites and adakitic andesite from the Sanchazi block of the Mian-Lue ophiolitic melange in the Qinling Mountains, central China: Evidence of partial melting of the subducted Plaeo-Tethyan crust, Geochem. J., 2000, 34: 359–377.Google Scholar
  68. 68.
    Yogodzinski, G. M., Kay, R. W., Volynets, O. N. et al., Magnesian andesite in the western Aleutian Komandorsky region: implications for slab melting and processes in the mantle wedge, Geol. Soc. Am. Bull. 1995, 107: 505–519.CrossRefGoogle Scholar
  69. 69.
    Rapp, R. P., Shimizu, N., Norman, M. D. et al., Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa, Chem. Geol., 1999, 160: 335–356.CrossRefGoogle Scholar
  70. 70.
    Martin, H., Smithies, R. H., Rapp, R. et al., An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution, Lithos, 2005, 79: 1–24.CrossRefGoogle Scholar
  71. 71.
    Wang, Q., Zhao, Z., Bai, Z. et al., Carboniferous adakites and Nb-enriched arc basaltic rocks association in the Alataw Mountains, north Xinjiang: Interactions between slab melt and mantle peridotite and implications for crustal growth, Chinese Sci. Bull., 2003, 48: 2108–2115.Google Scholar
  72. 72.
    Aguillón-Robles, A., Caimus, T., Bellon, H. et al., Late Miocene adakite and Nb-enriched basalts from Vizcaino Peninsula, Mexico: Indicators of East Pacific Rise subduction below southern Baja California, Geology, 2001, 29: 531–534.CrossRefGoogle Scholar
  73. 73.
    Wallace, P. J., Carmichael, I. S. E., Quaternary volcanism near the Valley of Mexico: implications for subduction zone magmatism and the effects of crustal thickness variations on primitive magma compositions, Contrib. Mineral. Petrol., 1999, 135: 291–314.CrossRefGoogle Scholar
  74. 74.
    Castillo, P. R., Solidum, R. U., Punongbayan, R. S., Origin of high field strength element enrichment in the Sulu Arc, southern Philippines, revisited, Geology, 2002, 30: 707–710.CrossRefGoogle Scholar
  75. 75.
    Rudnick, R. L., Making continental continental crust, Nature, 1995, 378: 571–578.Google Scholar
  76. 76.
    Petford, N., Atherton, M., Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru, J. Petrol., 1996, 37: 1491–1521.Google Scholar
  77. 77.
    Xiong, X. L., Li, X. H., Xu, J. F. et al., Extremely high-Na adakite-like magmas derived from alkali-rich basaltic underplate: The Late Cretaceous Zhantang andesites in the Huichang Basin, SE China, Geochem. J., 2001, 37: 233–252.Google Scholar
  78. 78.
    Chung, S. L., Liu, D. Y., Ji, J. Q. et al., Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet, Geology, 2003, 31: 1021–1024.CrossRefGoogle Scholar
  79. 79.
    Hou, Z. Q., Gao, Y. F., Qu, X. M. et al., Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet, Earth Planet. Sci. Lett., 2004, 220: 139–155.CrossRefGoogle Scholar
  80. 80.
    Wang, Q., McDermott, F., Xu, J. F. et al., Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower-crustal melting in an intracontinental setting, Geology, 2005, 33: 465–468.CrossRefGoogle Scholar
  81. 81.
    Kay, R. W., Kay, S. M. Delamination and delamination magmatism, Tectonophys., 1993, 219: 177–189.CrossRefGoogle Scholar
  82. 82.
    Kay, R. W., Kay, S. M., Andean adakites: Three ways to make them, Acta Petrologica Sinica, 2002, 18: 303–311.Google Scholar
  83. 83.
    Gao, S., Rudnick, R. L., Yuan, H. L. et al., Recycling lower continental crust in the North China craton, Nature, 2004, 432: 892–897.Google Scholar
  84. 84.
    Wang, Q., Xu, J. F., Zhao, Z. H. et al., Cretace ous high-potassium intrusive rocks in the Yueshan-Hongzhen area of east China: Adakites in an extensional tectonic regime within a continent, Geochem. J., 2004, 38: 417–434.Google Scholar
  85. 85.
    Zhang, Q., Qian, Q., Wang, E. et al., An east China plateau in mid-Late Yanshanian period: Implications for adakites, Chinese J. Geol. (in Chinese with English abstract), 2001, 36: 248–255.Google Scholar
  86. 86.
    Zhang, Q., Wang, Y., Qian, Q. et al., The characteristics and tectonic-metallogenic significance of the adakites in Yanshan period from eastern China, Acta Petrol. Sinica (in Chinese with English abstract), 2001, 17: 236–244.Google Scholar
  87. 87.
    Defant, M. J., Xu, J. F., Kepezhinskas, P. et al., Adakites: Some variations on a theme, Acta Petrol. Sinica, 2002, 18: 129–142.Google Scholar
  88. 88.
    Xu, J., Mei, H., Yu, X. et al., Adakites related to subduction in the northern margin of Jungar arc for the Late Paleozoic: Products of slabmelting, Chinese Sci. Bull., 2001, 46: 1312–1316.Google Scholar
  89. 89.
    Qu, X.-M., Hou, Z.-Q., Li, Y.-G., Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau, Lithos, 2004, 74: 131–148.CrossRefGoogle Scholar
  90. 90.
    Müntener, O., Kelemen, P. B., Grove, T. L., The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study, Contrib. Mineral. Petrol., 2001, 141: 643–658.Google Scholar
  91. 91.
    Dreher, S. T., Macpherson, C. G., Pearson, D. G. et al., Re-Os isotope studies of Mindanao adakites: Implications for sources of metals and melts, Geology, 2005, 33: 957–960.CrossRefGoogle Scholar
  92. 92.
    Garrison, J. M., Davidson, J. P., Dubious case for slab melting in the northern volcanic zone of the Andes, Geology, 2003, 31: 565–568.CrossRefGoogle Scholar
  93. 93.
    Solidum, R. U., Castillo, P. R., Hawkins, J. W., Geochemistry of lavas from Negros Arc, west central Philippines: insights into the contribution from the subducting slab, Geochem. Geophys. Geos., 2003, 4: 1–26.Google Scholar
  94. 94.
    Yaxley, G. M., Green, D. H., Reactions between eclogite and peridotite; mantle refertilisation by subduction of oceanic crust, Bull. Suisse Mineral. Petrogr., 1998, 78: 243–255.Google Scholar
  95. 95.
    Prouteau, G., Scaillet, B., Pichavant, M. et al., Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust, Nature, 2001, 410: 197–200.CrossRefGoogle Scholar
  96. 96.
    Myers, J. D., Frost, C. D., A petrologic investigation of the Adak volcanic center, central Aleutian arc, Alaska, J. Volcanol. Geotherm. Res., 1994, 60: 109–146.Google Scholar
  97. 97.
    Lopez-Escobar, L., Frey, F. A., Vergara, M., Andesites and high-alumina basalts from Central South Chile high Andes: geochemical evidences bearing to their petrogenesis, Contrib. Mineral. Petrol., 1977, 63: 199–228.Google Scholar
  98. 98.
    Martin, H., Archaean and modern granitoids as indicators of changes in geodynamic processes, Rev. Bras. Geocienc., 1987, 17: 360–365.Google Scholar
  99. 99.
    Futa, K., Stern, C. R., Sr and Nd isotopic and trace element compositions of quaternary volcanic centres of the southern Andes, Earth Planet. Sci. Lett., 1988, 88: 253–262.CrossRefGoogle Scholar
  100. 100.
    Kay, S. M., Ramos, V.A., Marquez, M., Evidence in Cerro Pampa volcanic rocks of slab melting prior to ridge trench collision in southern South America, J. Geol., 1993, 101: 703–714.Google Scholar
  101. 101.
    Bourgois, J., Lagabrielle, Y., Le Moigne, J. et al., Preliminary results on a field study of the Taitao ophiolite Southern Chile: implications for the evolution of the Chile Triple Junction, Ophioliti, 1994, 18: 113–129Google Scholar
  102. 102.
    Guivel, C., Lagabrielle, Y., Bourgois, J. et al., Cotten, J., Magmatic reponses to active spreading ridge subduction: multiple magma sources in the Taitao Peninsula region 468–478 S, Chile triple junction, Third International Symposium on Andean geodynamics ISAG 96 Saint-Malo, France, ORSTOM editeur, 1996, 575–578.Google Scholar
  103. 103.
    Stern, C. R., Kilian, R., Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Austral Volcanic Zone, Contrib. Mineral. Petrol., 1996, 123: 263–281.CrossRefGoogle Scholar
  104. 104.
    Sigmarsson, O., Martin, H., Knowles, J., Melting of a subducting oceanic crust in Austral Andean lavas from U-series disequilibria, Nature, 1998, 394: 566–569.CrossRefGoogle Scholar
  105. 105.
    Defant, M. J., Drummond, M. S., Mount St. Helens: potential example of the partial melting of the subducted lithosphere in a volcanic arc, Geology, 1993, 21: 541–550.CrossRefGoogle Scholar
  106. 106.
    Monzier, M., Robin, C., Samaniego, P. et al., Arnaud, N., Sangay volcano, Ecuador: Structural development, present activity and petrology, J. Volc. Geotherm. Res., 1999, 90: 49–79.CrossRefGoogle Scholar
  107. 107.
    Samaniego, P., Martin, H., Robin, C. et al., Transition from calc-alkalic to adakitic magmatism at Cayambevolcano, Ecuador: insights into slab melts and mantle wedge interactions, Geology, 2002, 30: 967–970.CrossRefGoogle Scholar
  108. 108.
    Morris, P. A., Slab melting as an explanation of Quaternary volcanism and aseismcity in Southwest Japan, Geology, 1995, 23: 395–398.CrossRefGoogle Scholar
  109. 109.
    Kepezhinskas, P. K., Origin of the hornblende andesites of northern Kamchatka, Int. Geol. Rev., 1989, 31: 246–252.Google Scholar
  110. 110.
    Honthaas, C., Bellon, H., Kepezhinskas, P. K. et al., Nouvelles datations 40Kr/40Ar du magmatisme cretace quaternaire du Kamchatka du Nord Russie, C. R. Acad. Sci. Paris, 1990, 320: 197–204.Google Scholar
  111. 111.
    Kepezhinskas, P. K., Defant, M. J., Drummond, M. S., Progressive enhancement of island arc mantle by melt-peridotite interaction inferred from Kamchatka adakties, Geochim. Cosmochim. Acta, 1996, 60: 1217–1229.CrossRefGoogle Scholar
  112. 112.
    Maury, R. C., Sajona, F. G., Pubellier, M. et al., Fusion de la croute oceanique dans les zones de subduction r collision recentes: l’exemple de Mindanao, Philippines, Bull. Soc. Geol. France, 1996, 167: 579–595.Google Scholar
  113. 113.
    Ma, C., Li, Z., Ehlers, C. et al., A post-collisional magmatic plumbing system: Mesozoic granitiod plutons from the Dabie high-pressure and ultrahigh-pressure metamorphic zone, east-central China, Lithos., 1998, 45: 431–457.CrossRefGoogle Scholar
  114. 114.
    GEOROC electronic database, Max Planck Institut fur Chemie, Mainz, Germany,

Copyright information

© Science in China Press 2006

Authors and Affiliations

  • Paterno R. Castillo
    • 1
  1. 1.Scripps Institution of OceanographyUCSDLa JollaUSA

Personalised recommendations