Chinese Science Bulletin

, Volume 51, Issue 2, pp 221–228 | Cite as

Long-term trend and abrupt events of the Holocene Asian monsoon inferred from a stalagmite δ10O record from Shennongjia in Central China

  • Shao Xiaohua 
  • Wang Yongjin 
  • Cheng Hai 
  • Kong Xinggong 
  • Wu Jiangying 
  • Edwards R. Lawrence 
Articles

Abstract

A high-resolution oxygen-isotope record from a thorium-uranium-dated stalagmite from Shanbao Cave at Shennongjia reflects variations in the amount of monsoon precipitation for the period from 11.5 to 2.1 ka (1 ka = 1000 cal aBP). Between 11.5 and 9.3 ka, a sharp decrease in δ18O indicates a rapid increase in monsoon precipitation. An interval of generally high monsoon precipitation is observed between 9.3 and 4.4 ka. An arid period has prevailed between 4.4 and 2.1 ka. The long-term trend of Shanbao record appears to follow summer insolation at 33°N latitude. An abrupt decrease in monsoon precipitation around 4.3 ka is synchronous with the collapse of Neolithic culture in central China. This abrupt change could have resulted from the amplification of the gradually decreased summer insolation by the positive vegetation-atmosphere-aerosol feedback. The weakened Asian monsoon events were in concert with decreased Greenland temperature during the early Holocene, centered at 8.2, 8.6, 9.3, 10.2 and 11.0 ka. This correlation suggests that changes in low-latitude monsoon are connected with climate change in high-latitude polar region.

Keywords

Holocene stalagmite monsoon precipitation global ice volume Hubei Province Shennongjia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wu, W. X., Liu, T. S., Possible role of the “Holocene Event 3” on the collapse of Neolithic Cultures around the Central Plain of China, Quaternary International, 2004, 117: 153–166.CrossRefGoogle Scholar
  2. 2.
    DeMenocal, P. B., Cultural responses to climate change during the Late Holocene, Science, 2001, 292: 667–673.CrossRefGoogle Scholar
  3. 3.
    Dalfes, H. N., Kukla, G., Weiss, H., Third millennium BC climate change and old world collapse, NATO ASI Series, 1997, 1(49): 723.Google Scholar
  4. 4.
    Fleitmann, D., Burns, S. J., Mudelsee, M. et al., Holocene Forcing of the Indian Monsoon recorded in a stalagmite from Southern Oman, Science, 2003, 300: 1737–1739.CrossRefGoogle Scholar
  5. 5.
    Wang, Y. J., Cheng, H., Edwards, R. L. et al., The Holocene Asian Monsoon: links to solar changes and North Atlantic climate, Science, 2005, 308: 854–857.Google Scholar
  6. 6.
    Hong, Y. T., Hong, B., Lin, Q. H. et al., Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene, Earth and Planetary Science Letters, 2003, 211: 371–380.CrossRefGoogle Scholar
  7. 7.
    Gasse, F., Hydrological changes in the African tropics since the last glacial maximum, Quaternary Science Review, 2000, 19: 189–211.CrossRefGoogle Scholar
  8. 8.
    DeMenocal, P., Ortiz, J., Guilderson T. et al., Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing, Quaternary Science Review, 2000, 19: 347–361.CrossRefGoogle Scholar
  9. 9.
    An, Z. S., Wu, X. H., Wang, P. X. et al., Changes in the monsoon and associated environmental changes in China since the last interglacial, in Loess, Environment and Global Change (ed. Liu, T. S.) (in Chinese), Beijing: Science Press, 1991, 1–29.Google Scholar
  10. 10.
    Chen, F. H., Shi, Q., Wang, J. M., Environmental changes documented by sedimentation of Lake Yiema in arid China since the Late Glaciation, Journal of Paleolimnology, 1999, 22: 159–169.Google Scholar
  11. 11.
    Mayewski, P. A., Rohlingb, E. E., Stagerc, J. C. et al., Holocene climate variability, Quaternary Research, 2004, 62: 243–255.CrossRefGoogle Scholar
  12. 12.
    Wang, Y. J., Cheng, H., Edwards, R. L. et al., A high resolution absolute-dated late Pleistocene monsoon record from Hulu cave, China, Science, 2001, 294: 2345–2348.Google Scholar
  13. 13.
    Neff, U., Burns, S. J., Mangini, A. et al., Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago, Nature, 2001, 411: 290–293.CrossRefGoogle Scholar
  14. 14.
    Wu, J. L., Shen, J., Wang, S. M. et al., Characteristics of an early Holocene climate and environment from lake sediments in Ebinur region, NW China, Science in China, Ser. D, 2005, 48(2): 258–265.Google Scholar
  15. 15.
    Chen, F. H., Zhu, Y., Li, J. J. et al., Abrupt Holocene changes of the Asian monsoon at millennial-and centennial-scales: evidence from Lake Sediment document in Minqin Basin, North China, Chinese Science Bulletin, 2001, 46(23): 1942–1947.Google Scholar
  16. 16.
    Liu, J. Q., Lü, H. Y., Negendank, J. et al., Periodicity of Holocene climatic variations in the Huguangyan Maar Lake, Chinese Science Bulletin, 2000, 45(18): 1712–1717.Google Scholar
  17. 17.
    Qin, J. M., Yuan, D. X., Cheng, H. et al., The Y.D. and climate abrupt events in the early and middle Holocene: a stalagmite oxygen isotope record from Maolan, Guizhou, Science in China, Ser. D, 2005, 48(4): 530–537.Google Scholar
  18. 18.
    Zhu, Z. Q., Song, C. S., Scientific survey of Shennongjia Natural Conservation (in Chinese), Beijing: China Forestry Publishing House, 1999, 19.Google Scholar
  19. 19.
    Jiang, X. Y., Wang, Y. J., Kong, X. G. et al., Abrupt climate change of East Asian Monsoon at 130kaBP inferred from a high resolution stalagmite δ18O record, Chinese Science Bulletin, 2005, 50(23): 2765–2779.CrossRefGoogle Scholar
  20. 20.
    Shen, C. C., Edwards, R. L., Cheng, H. et al., Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry, Chemical Geology, 2002, 185: 165–178.CrossRefGoogle Scholar
  21. 21.
    Hendy, C. H., The isotopic geochemistry of speleothems: Part I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators, Geochimica et Cosmochimica Acta, 1971, 35: 801–824CrossRefGoogle Scholar
  22. 22.
    Shen, J., Liu, X. Q., Matsumoto, R. et al., A high-resolution climatic change since the Late Glacial Age inferred from multi-proxy of sediments in Qinghai Lake, Science in China, Ser. D, 2005, 48(6): 742–751.Google Scholar
  23. 23.
    Ji, J. F., Shen, J., Balsam, W. et al., Asian monsoon oscillations in the northeastern Qinghai-Tibet Plateau since the late glacial as interpreted from visible reflectance of Qinghai Lake sediments, Earth and Planetary Science Letters, 2005, 233: 61–70.CrossRefGoogle Scholar
  24. 24.
    Peng, Y. J., Xia, J. L., Nakamurab, T. et al., Holocene East Asian monsoonal precipitation pattern revealed by grain-size distribution of core sediments of Daihai Lake in Inner Mongolia of north-central China, Earth and Planetary Science Letters, 2005, 233: 467–479.CrossRefGoogle Scholar
  25. 25.
    Chen, F. H., Wu, W., Holmes, J. et al., A mid-Holocene drought interval as evidenced by lake desiccation in the Alashan Plateau, Inner Mongolia, China, Chinese Science Bulletin, 2003, 48(13): 1–10.Google Scholar
  26. 26.
    Biscaye, P. E., Grousset, F. E., Revel, M. et al., Asian provenance of glacial dust (stage 2) in the Greenland Ice Core project 2 ice core, summit Greenland, Journal of Geophysical Research, 1998, 102(C12): 26765–26781.Google Scholar
  27. 27.
    O’Brien, S. R., Mayewski, P. A., Meeker, L. D. et al., Complexity of Holocene climate as reconstructed from a Greenland Ice Core, Science, 1995, 270: 1962–1964.Google Scholar
  28. 28.
    Porter, S. C., Chinese loess record of monsoon climate during the last glacial-interglacial cycle, Earth-Science Reviews, 2001, 54: 115–128.CrossRefGoogle Scholar
  29. 29.
    Broström, A., Coe, M. T., Harrison, S. P. et al., Land surface feedbacks and palaeomonsoons in northern Africa, Geophysical Research Letters, 1998, 25: 3615–3618.CrossRefGoogle Scholar
  30. 30.
    Kutzbach, J. E., Liu, Z., Response of the Africa monsoon to orbital forcing ocean feedbacks in the middle Holocene, Science, 1997, 278: 440–444.CrossRefGoogle Scholar
  31. 31.
    Thompson, L. G., Thompson, E. M., Davis, M. E., et al., Kilimanjaro Ice Core records: Evidence of Holocene climate change in tropical Africa, Science, 2002, 298: 589–593.CrossRefGoogle Scholar
  32. 32.
    Claussen, M., Kubatzki, C., Brovkin, V. et al., Simulation of an abrupt change in Saharan vegetation in the mid-Holocene, Geophysical Research Letters, 1999, 2037–2040.Google Scholar
  33. 33.
    Southon, J., A first step to reconciling the GRIP and GISP2 Ice-Core chronologies, 0–14500 yr BP, Quaternary Research, 2002, 57: 32–37.CrossRefGoogle Scholar
  34. 34.
    Bond, G., Kromer, B., Beer, J. et al., Persistent solar influence on North Atlantic climate during the Holocene, Science, 2001, 294: 2130–2136CrossRefGoogle Scholar
  35. 35.
    Bond, G., Showers, W., Cheseby, M. et al., A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial Climates, Science, 1997, 278: 1257–1266.CrossRefGoogle Scholar
  36. 36.
    Yao, T. D., Shi, Y. F., Climatic changes during the Holocene recorded in dunde ice core, Qilian Mts, in Climate and Environment in China During the Megathermal Period in the Holocene (ed. Shi, Y. F.) (in Chinese), Beijing: Ocean Press, 1992, 206–211.Google Scholar
  37. 37.
    Staubwasser, M., Sirocko, F., Grootes, P. M. et al., South Asian monsoon climate change and radiocarbon in the Arabian Sea during early and mid Holocene, Paleoceanography, 2002, 17(4): 1063.CrossRefGoogle Scholar
  38. 38.
    Alley, R. B., Mayewski, P. A., Sowers, T. et al., Holocene climate instability: A prominent, widespread event 8200yr ago, Geology, 1997, 25(6): 483–486.CrossRefGoogle Scholar
  39. 39.
    Eelco, J. R., Heiko, P., Centennial-scale climate cooling with a sudden cold event around 8,200 years ago, Nature, 2005, 434: 975–979.Google Scholar
  40. 40.
    McDermott, F., Mattey, D. P., Hawkesworth, C., Centennial-scale Holocene climate variability revealed by a high-resolution speleothem δ18O Record from SW Ireland, Science, 2001, 294: 1328–1331.CrossRefGoogle Scholar
  41. 41.
    Baldini, J. U. L., McDermott, F., Fairchild, I. J., Structure of the 8200-year cold event relvealed by a speleothem trace element record, Science, 2002, 296: 2203–2206.CrossRefGoogle Scholar
  42. 42.
    Alley, R. B., Meese, D. A., Shuman, A. J. et al., Abrupt accumulation increase at the Younger Dryas termination in the GISP2 ice core, Nature, 1993, 362: 527–529.CrossRefGoogle Scholar
  43. 43.
    Stuiver, M., Grootes P. M., Braziunas, T. F., The GISP2 δ18O climate record of the past 16,500 years and the role of the sun, ocean and volcanoes, Quaternary Research, 1995, 44: 341–354.CrossRefGoogle Scholar
  44. 44.
    Nesje, A., Dahl, S. O., The Greenland 8200 cal yr BP event detected in loss-on-ignition profiles in Norwegian lacustrine sediment sequences, Journal of Quaternary Science, 2001, 16: 155–166.CrossRefGoogle Scholar
  45. 45.
    Porter, S. C., An, Z. S., Correlation between climate events in the North Atlantic and China during the last glaciation, Nature, 1995, 375: 305–308.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2006

Authors and Affiliations

  • Shao Xiaohua 
    • 1
  • Wang Yongjin 
    • 1
  • Cheng Hai 
    • 2
  • Kong Xinggong 
    • 1
  • Wu Jiangying 
    • 1
  • Edwards R. Lawrence 
    • 2
  1. 1.College of Geography ScienceNanjing Normal UniversityNanjingChina
  2. 2.Department of Geology and GeophysicsMinnesota UniversityUSA

Personalised recommendations