Skip to main content
Log in

Observation of antichiral edge states in a circuit lattice

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We construct an electrical circuit to realize a modified Haldane lattice exhibiting the phenomenon of antichiral edge states. The circuit consists of a network of inductors and capacitors with interconnections reproducing the effects of a magnetic vector potential. The next nearest neighbor hoppings are configured differently from the standard Haldane model, and as predicted by earlier theoretical studies, this gives rise to antichiral edge states that propagate in the same direction on opposite edges and coexist with bulk states at the same frequency. Using pickup coils to measure voltage distributions in the circuit, we experimentally verify the key features of the antichiral edge states, including their group velocities and ability to propagate consistently in a Möbius strip configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).

    Article  ADS  Google Scholar 

  2. M. Z. Hasan, and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010), arXiv: 1002.3895.

    Article  ADS  Google Scholar 

  3. X. L. Qi, and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011), arXiv: 1008.2026.

    Article  ADS  Google Scholar 

  4. L. Lu, J. D. Joannopoulos, and M. Soljačić, Nat. Photon. 8, 821 (2014), arXiv: 1408.6730.

    Article  ADS  Google Scholar 

  5. A. B. Khanikaev, and G. Shvets, Nat. Photon. 11, 763 (2017).

    Article  ADS  Google Scholar 

  6. G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, Nature 515, 237 (2014), arXiv: 1406.7874.

    Article  ADS  Google Scholar 

  7. N. Jia, C. Owens, A. Sommer, D. Schuster, and J. Simon, Phys. Rev. X 5, 021031 (2015).

    Google Scholar 

  8. V. V. Albert, L. I. Glazman, and L. Jiang, Phys. Rev. Lett. 114, 173902 (2015), arXiv: 1410.1243.

    Article  ADS  MathSciNet  Google Scholar 

  9. T. Hofmann, T. Helbig, C. H. Lee, M. Greiter, and R. Thomale, Phys. Rev. Lett. 122, 247702 (2019).

    Article  ADS  Google Scholar 

  10. Z. Q. Zhang, B. L. Wu, J. Song, and H. Jiang, Phys. Rev. B 100, 184202 (2019), arXiv: 1906.04064.

    Article  ADS  Google Scholar 

  11. M. Ezawa, Phys. Rev. B 100, 081401 (2019), arXiv: 1904.03823.

    Article  ADS  Google Scholar 

  12. S. Raghu, and F. D. M. Haldane, Phys. Rev. A 78, 033834 (2008), arXiv: cond-mat/0602501.

    Article  ADS  Google Scholar 

  13. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, Nature 461, 772 (2009).

    Article  ADS  Google Scholar 

  14. Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan, Phys. Rev. Lett. 106, 093903 (2011).

    Article  ADS  Google Scholar 

  15. R. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman, and A. Alù, Science 343, 516 (2014).

    Article  ADS  Google Scholar 

  16. Z. Yang, F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and B. Zhang, Phys. Rev. Lett. 114, 114301 (2015), arXiv: 1411.7100.

    Article  ADS  Google Scholar 

  17. M. Xiao, W. J. Chen, W. Y. He, and C. T. Chan, Nat. Phys. 11, 920 (2015), arXiv: 1503.06295.

    Article  Google Scholar 

  18. C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005), arXiv: cond-mat/0411737.

    Article  ADS  Google Scholar 

  19. B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science 314, 1757 (2006), arXiv: cond-mat/0611399.

    Article  ADS  Google Scholar 

  20. E. Colomés, and M. Franz, Phys. Rev. Lett. 120, 086603 (2018), arXiv: 1709.01026.

    Article  ADS  Google Scholar 

  21. M. Mannaï, and S. Haddad, J. Phys.-Condens. Matter 32, 225501 (2020), arXiv: 1907.11213.

    Article  ADS  Google Scholar 

  22. D. Bhowmick, and P. Sengupta, Phys. Rev. B 101, 195133 (2020), arXiv: 1908.04580.

    Article  ADS  Google Scholar 

  23. S. Mandal, R. Ge, and T. C. H. Liew, Phys. Rev. B 99, 115423 (2019), arXiv: 1903.07814.

    Article  ADS  Google Scholar 

  24. J. Chen, W. Liang, and Z. Y. Li, Phys. Rev. B 101, 214102 (2020).

    Article  ADS  Google Scholar 

  25. C. Wang, L. Zhang, P. Zhang, J. Song, and Y. X. Li, Phys. Rev. B 101, 045407 (2020), arXiv: 1904.06649.

    Article  ADS  Google Scholar 

  26. M. M. Denner, J. L. Lado, and O. Zilberberg, Phys. Rev. Res. 2, 043190 (2020), arXiv: 2006.13903.

    Article  Google Scholar 

  27. Y. Xu, R. L. Chu, and C. Zhang, Phys. Rev. Lett. 112, 136402 (2014), arXiv: 1310.4100.

    Article  ADS  Google Scholar 

  28. C. H. Lee, S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp, T. Kiessling, and R. Thomale, Commun. Phys. 1, 39 (2018), arXiv: 1705.01077.

    Article  Google Scholar 

  29. T. Goren, K. Plekhanov, F. Appas, and K. L. Hur, Phys. Rev. B 97, 041106 (2018), arXiv: 1711.02034.

    Article  ADS  Google Scholar 

  30. K. Luo, J. Feng, Y. X. Zhao, and R. Yu, arXiv: 1810.09231.

  31. K. Luo, R. Yu, and H. Weng, Research 2018, 6793752 (2018).

    Article  Google Scholar 

  32. T. Helbig, T. Hofmann, C. H. Lee, R. Thomale, S. Imhof, L. W. Molenkamp, and T. Kiessling, Phys. Rev. B 99, 161114 (2019), arXiv: 1807.09555.

    Article  ADS  Google Scholar 

  33. Y. Hadad, J. C. Soric, A. B. Khanikaev, and A. Alù, Nat. Electron. 1, 178 (2018).

    Article  Google Scholar 

  34. Y. Wang, L. J. Lang, C. H. Lee, B. Zhang, and Y. D. Chong, Nat. Commun. 10, 1102 (2019), arXiv: 1807.11163.

    Article  ADS  Google Scholar 

  35. M. Ezawa, Phys. Rev. B 98, 201402 (2018), arXiv: 1809.08847.

    Article  ADS  Google Scholar 

  36. S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp, T. Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert, and R. Thomale, Nat. Phys. 14, 925 (2018), arXiv: 1708.03647.

    Article  Google Scholar 

  37. M. Serra-Garcia, R. Süsstrunk, and S. D. Huber, Phys. Rev. B 99, 020304 (2019).

    Article  ADS  Google Scholar 

  38. H. Yang, Z. X. Li, Y. Liu, Y. Cao, and P. Yan, Phys. Rev. Res. 2, 022028 (2020), arXiv: 2004.08274.

    Article  Google Scholar 

  39. R. Yu, Y. X. Zhao, and A. P. Schnyder, Natl. Sci. Rev. 7, 1288 (2020).

    Article  Google Scholar 

  40. Y. Wang, H. M. Price, B. Zhang, and Y. D. Chong, Nat. Commun. 11, 2356 (2020), arXiv: 2001.07427.

    Article  ADS  Google Scholar 

  41. Y. Lu, N. Jia, L. Su, C. Owens, G. Juzeliūnas, D. I. Schuster, and J. Simon, Phys. Rev. B 99, 020302 (2019), arXiv: 1807.05243.

    Article  ADS  Google Scholar 

  42. W. Zhu, S. Hou, Y. Long, H. Chen, and J. Ren, Phys. Rev. B 97, 075310 (2018), arXiv: 1710.07268.

    Article  ADS  Google Scholar 

  43. W. Zhu, Y. Long, H. Chen, and J. Ren, Phys. Rev. B 99, 115410 (2019).

    Article  ADS  Google Scholar 

  44. X. Cheng, C. Jouvaud, X. Ni, S. H. Mousavi, A. Z. Genack, and A. B. Khanikaev, Nat. Mater. 15, 542 (2016).

    Article  ADS  Google Scholar 

  45. C. Owens, A. LaChapelle, B. Saxberg, B. M. Anderson, R. Ma, J. Simon, and D. I. Schuster, Phys. Rev. A 97, 013818 (2018), arXiv: 1708.01651.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ZhiHong Hang or YiDong Chong.

Additional information

We thank You Wang, Qiang Wang and Udvas Chattopadhyay from Nanyang Technological University for helpful discussions. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11874274, and 12004425), the Natural Science Foundation of Jiangsu Province (Grant Nos. BK20170058, and BK20200630), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). YiDong Chong was supported by the Singapore MOE Academic Research Fund Tier 3 (Grant No. MOE2016-T3-1-006).

Supplementary Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhu, D., Hang, Z. et al. Observation of antichiral edge states in a circuit lattice. Sci. China Phys. Mech. Astron. 64, 257011 (2021). https://doi.org/10.1007/s11433-021-1675-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1675-0

Keywords

Navigation