Advertisement

Visualizing the charge order and topological defects in an overdoped (Bi,Pb)2Sr2CuO6+x superconductor

  • Ying Fei
  • Yuan ZhengEmail author
  • KunLiang Bu
  • WenHao Zhang
  • Ying Ding
  • XingJiang Zhou
  • Yi YinEmail author
Article
  • 4 Downloads

Abstract

Electronic charge order is a symmetry breaking state in high-Tc cuprate superconductors. In scanning tunneling microscopy, the detected charge-order-induced modulation is an electronic response of the charge order. For an overdoped (Bi,Pb)2Sr2CuO6+x sample, we apply scanning tunneling microscopy to explore local properties of the charge order. The ordering wavevector is non-dispersive with energy, which can be confirmed and determined. By extracting its order-parameter field, we identify dislocations in the stripe structure of the electronic modulation, which correspond to topological defects with an integer winding number of ±1. Through differential conductance maps over a series of reduced energies, the development of different response of the charge order is observed and a spatial evolution of topological defects is detected. The intensity of charge-order-induced modulation increases with energy and reaches its maximum when approaching the pseudogap energy. In this evolution, the topological defects decrease in density and migrate in space. Furthermore, we observe appearance and disappearance of closely spaced pairs of defects as energy changes. Our experimental results could inspire further studies of the charge order in both high-Tc cuprate superconductors and other charge density wave materials.

Keywords

cuprate superconductors scanning tunneling microscopy charge order topological defects 

Supplementary material

11433_2019_9454_MOESM1_ESM.pdf (5.8 mb)
Visualizing the charge order and topological defects in an overdoped (Bi,Pb)2Sr2CuO6+x superconductor

References

  1. 1.
    B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen, Nature 518, 179 (2015).ADSCrossRefGoogle Scholar
  2. 2.
    T. Timusk, and B. Statt, Rep. Prog. Phys. 62, 61 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    M. Vojta, Adv. Phys. 58, 699 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    P. Cai, W. Ruan, Y. Y. Peng, C. Ye, X. T. Li, Z. Q. Hao, X. J. Zhou, D. H. Lee, and Y. Y. Wang, Nat. Phys. 12, 1047 (2016), arXiv: 1508.05586.CrossRefGoogle Scholar
  5. 5.
    G. Grüner, Density Waves in Solids (Perseus Publishing, Cambridge, Massachusetts, 1994).Google Scholar
  6. 6.
    Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, and J. C. Davis, Science 315, 1380 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    C. V. Parker, P. Aynajian, E. H. da Silva Neto, A. Pushp, S. Ono, J. S. Wen, Z. J. Xu, G. D. Gu, and A. Yazdani, Nature 468, 677 (2010), arXiv: 1012.0340.ADSCrossRefGoogle Scholar
  8. 8.
    Y. Kohsaka, C. Taylor, P. Wahl, A. Schmidt, J. Lee, K. Fujita, J. W. Alldredge, K. McElroy, J. Lee, H. Eisaki, S. Uchida, D. H. Lee, and J. C. Davis, Nature 454, 1072 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    A. Mesaros, K. Fujita, H. Eisaki, S. Uchida, J. C. Davis, S. Sachdev, J. Zaanen, M. J. Lawler, and E. A. Kim, Science 333, 426 (2011), arXiv: 1108.0487.ADSCrossRefGoogle Scholar
  10. 10.
    K. Fujita, C. K. Kim, I. Lee, J. H. Lee, M. H. Hamidian, I. A. Firmo, S. Mukhopadhyay, H. Eisaki, S. Uchida, M. J. Lawler, E. A. Kim, and J. C. Davis, Science 344, 612 (2014), arXiv: 1403.7788.ADSCrossRefGoogle Scholar
  11. 11.
    M. J. Lawler, K. Fujita, J. Lee, A. R. Schmidt, Y. Kohsaka, C. K. Kim, H. Eisaki, S. Uchida, J. C. Davis, J. P. Sethna, and E. A. Kim, Nature 466, 347 (2010), arXiv: 1007.3216.ADSCrossRefGoogle Scholar
  12. 12.
    K. Fujita, M. H. Hamidian, S. D. Edkins, C. K. Kim, Y. Kohsaka, M. Azuma, M. Takano, H. Takagi, H. Eisaki, S. Uchida, A. Allais, M. J. Lawler, E. A. Kim, S. Sachdev, and J. C. S. Davis, Proc. Natl. Acad. Sci. 111, E3026 (2014), arXiv: 1404.0362.CrossRefGoogle Scholar
  13. 13.
    M. H. Hamidian, S. D. Edkins, C. K. Kim, J. C. Davis, A. P. Mackenzie, H. Eisaki, S. Uchida, M. J. Lawler, E. A. Kim, S. Sachdev, and K. Fujita, Nat. Phys. 12, 150 (2016), arXiv: 1507.07865.CrossRefGoogle Scholar
  14. 14.
    A. Mesaros, K. Fujita, S. D. Edkins, M. H. Hamidian, H. Eisaki, S. Uchida, J. C. S. Davis, M. J. Lawler, and E. A. Kim, Proc. Natl. Acad. Sci. 113, 12661 (2016).CrossRefGoogle Scholar
  15. 15.
    J. E. Hoffman, E. W. Hudson, K. M. Lang, V. Madhavan, H. Eisaki, S. Uchida, and J. C. Davis, Science 295, 466 (2002).ADSCrossRefGoogle Scholar
  16. 16.
    M. Vershinin, S. Misra, S. Ono, Y. Abe, Y. Ando, and A. Yazdani, Science 303, 1995 (2004).ADSCrossRefGoogle Scholar
  17. 17.
    E. H. da Silva Neto, P. Aynajian, A. Frano, R. Comin, E. Schierle, E. Weschke, A. Gyenis, J. Wen, J. Schneeloch, Z. Xu, S. Ono, G. Gu, M. Le Tacon, and A. Yazdani, Science 343, 393 (2014), arXiv: 1312.1347.ADSCrossRefGoogle Scholar
  18. 18.
    W. D. Wise, M. C. Boyer, K. Chatterjee, T. Kondo, T. Takeuchi, H. Ikuta, Y. Wang, and E. W. Hudson, Nat. Phys. 4, 696 (2008), arXiv: 0806.0203.CrossRefGoogle Scholar
  19. 19.
    W. D. Wise, K. Chatterjee, M. C. Boyer, T. Kondo, T. Takeuchi, H. Ikuta, Z. Xu, J. Wen, G. D. Gu, Y. Wang, and E. W. Hudson, Nat. Phys. 5, 213 (2009), arXiv: 0811.1585.CrossRefGoogle Scholar
  20. 20.
    T. A. Webb, M. C. Boyer, Y. Yin, D. Chowdhury, Y. He, T. Kondo, T. Takeuchi, H. Ikuta, E. W. Hudson, J. E. Hoffman, and M. H. Hamidian, Phys. Rev. X 9, 021021 (2019).Google Scholar
  21. 21.
    R. Comin, A. Frano, M. M. Yee, Y. Yoshida, H. Eisaki, E. Schierle, E. Weschke, R. Sutarto, F. He, A. Soumyanarayanan, Y. He, M. Le Tacon, I. S. Elfimov, J. E. Hoffman, G. A. Sawatzky, B. Keimer, and A. Damascelli, Science 343, 390 (2014), arXiv: 1312.1343.ADSCrossRefGoogle Scholar
  22. 22.
    Y. Y. Peng, R. Fumagalli, Y. Ding, M. Minola, S. Caprara, D. Betto, M. Bluschke, G. M. De Luca, K. Kummer, E. Lefrancois, M. Salluzzo, H. Suzuki, M. Le Tacon, X. J. Zhou, N. B. Brookes, B. Keimer, L. Braicovich, M. Grilli, and G. Ghiringhelli, Nat. Mater. 17, 697 (2018), arXiv: 1705.06165.ADSCrossRefGoogle Scholar
  23. 23.
    Y. Y. Peng, M. Salluzzo, X. Sun, A. Ponti, D. Betto, A. M. Ferretti, F. Fumagalli, K. Kummer, M. Le Tacon, X. J. Zhou, N. B. Brookes, L. Braicovich, and G. Ghiringhelli, Phys. Rev. B 94, 184511 (2016), arXiv: 1610.01823.ADSCrossRefGoogle Scholar
  24. 24.
    R. Comin, R. Sutarto, F. He, E. H. da Silva Neto, L. Chauviere, A. Fraño, R. Liang, W. N. Hardy, D. A. Bonn, Y. Yoshida, H. Eisaki, A. J. Achkar, D. G. Hawthorn, B. Keimer, G. A. Sawatzky, and A. Damascelli, Nat. Mater. 14, 796 (2015), arXiv: 1402.5415.ADSCrossRefGoogle Scholar
  25. 25.
    J. Chang, E. Blackburn, A. T. Holmes, N. B. Christensen, J. Larsen, J. Mesot, R. Liang, D. A. Bonn, W. N. Hardy, A. Watenphul, M. Zimmermann, E. M. Forgan, and S. M. Hayden, Nat. Phys. 8, 871 (2012), arXiv: 1206.4333.CrossRefGoogle Scholar
  26. 26.
    T. Wu, H. Mayaffre, S. Krämer, M. Horvatić, C. Berthier, W. N. Hardy, R. Liang, D. A. Bonn, and M. H. Julien, Nature 477, 191 (2011), arXiv: 1109.2011.ADSCrossRefGoogle Scholar
  27. 27.
    Ø. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and C. Renner, Rev. Mod. Phys. 79, 353 (2007).ADSCrossRefGoogle Scholar
  28. 28.
    Y. He, Y. Yin, M. Zech, A. Soumyanarayanan, M. M. Yee, T. Williams, M. C. Boyer, K. Chatterjee, W. D. Wise, I. Zeljkovic, T. Kondo, T. Takeuchi, H. Ikuta, P. Mistark, R. S. Markiewicz, A. Bansil, S. Sachdev, E. W. Hudson, and J. E. Hoffman, Science 344, 608 (2014), arXiv: 1305.2778.ADSCrossRefGoogle Scholar
  29. 29.
    Y. Zheng, Y. Fei, K. L. Bu, W. H. Zhang, Y. Ding, X. J. Zhou, J. E. Hoffman, and Y. Yin, Sci. Rep. 7, 8059 (2017).ADSCrossRefGoogle Scholar
  30. 30.
    L. Zhao, W. T. Zhang, H. Y. Liu, J. Q. Meng, G. D. Liu, W. Lu, X. L. Dong, and X. J. Zhou, Chin. Phys. Lett. 27, 087401 (2010).ADSCrossRefGoogle Scholar
  31. 31.
    Y. Ando, Y. Hanaki, S. Ono, T. Murayama, K. Segawa, N. Miyamoto, and S. Komiya, Phys. Rev. B 61, R14956 (2000).ADSCrossRefGoogle Scholar
  32. 32.
    Y. Fei, K. L. Bu, W. H. Zhang, Y. Zheng, X. Sun, Y. Ding, X. J. Zhou, and Y. Yin, Sci. China-Phys. Mech. Astron. 61, 127404 (2018), arXiv: 1803.03400.ADSCrossRefGoogle Scholar
  33. 33.
    M. H. Hamidian, I. A. Firmo, K. Fujita, S. Mukhopadhyay, J. W. Orenstein, H. Eisaki, S. Uchida, M. J. Lawler, E. A. Kim, and J. C. Davis, New J. Phys. 14, 053017 (2012), arXiv: 1202.4320.ADSCrossRefGoogle Scholar
  34. 34.
    X. T. Li, Y. Ding, C. C. He, W. Ruan, P. Cai, C. Ye, Z. Q. Hao, L. Zhao, X. J. Zhou, Q. H. Wang, and Y. Y. Wang, New J. Phys. 20, 063041 (2018), arXiv: 1905.02436.ADSCrossRefGoogle Scholar
  35. 35.
    P. M. Chaikin, and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 1995).CrossRefGoogle Scholar
  36. 36.
    M. Tinkham, Introduction to Superconductivity, 2nd ed. (Courier Corporation, New York, 1996).Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsZhejiang UniversityHangzhouChina
  2. 2.Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Collaborative Innovation Center of Quantum MatterBeijingChina
  4. 4.Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjingChina

Personalised recommendations