Numerical study on Rayleigh-Taylor effect on cylindrically converging Richtmyer-Meshkov instability

  • ZhiGang ZhaiEmail author
  • Fu Zhang
  • ZhangBo Zhou
  • JuChun Ding
  • Chih-Yung Wen


Evolution of a two-dimensional air/SF6 single-mode interface is numerically investigated by an upwind CE/SE method under a cylindrically converging circumstance. The Rayleigh-Taylor effect caused by the flow deceleration on the phase inversion (RTPI) is highlighted. The RTPI was firstly observed in our previous experiment, but the related mechanism remains unclear. By isolating the three-dimensional effect, it is found here that the initial amplitude (a0), the azimuthal mode number (k0) and the re-shocking moment are the three major parameters which determine the RTPI occurrence. In the variable space of (k0, a0), a critical a0 for the RTPI occurrence is solved for each k0, and there exists a threshold value of k0 below which the RTPI will not occur no matter what a0 is. There exists a special k0 corresponding to the largest critical a0, and the reduction rule of critical a0 with k0 can be well described by an exponential decay function. The results show that the occurrence of the RTPI requires a small a0 which should be less than a critical value, a large k0 which should exceed a threshold, and a right impinging moment of the re-shock which should be later than the RTPI occurrence. Finally, the effects of the incident shock strength, the density ratio and the initial position of the interface on the threshold value of k0 and on the maximum critical a0 are examined. These new findings would facilitate the understanding of the converging Richtmyer-Meshkov instability and would be helpful for designing an optimal structure of the inertia confinement fusion capsule.


converging shock wave Rayleigh-Taylor effect Richtmyer-Meshkov instability 


  1. 1.
    R. D. Richtmyer, Comm. Pure Appl. Math. 13, 297 (1960).MathSciNetCrossRefGoogle Scholar
  2. 2.
    E. E. Meshkov, Fluid Dyn. 4, 101 (1972).ADSCrossRefGoogle Scholar
  3. 3.
    J. Lindl, O. Landen, J. Edwards, and E. Moses, Phys. Plasmas 21, 020501 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    J. Yang, T. Kubota, and E. E. Zukoski, J. Fluid Mech. 258, 217 (1994).ADSCrossRefGoogle Scholar
  5. 5.
    W. Arnett, J. Bahcall, R. Kirshner, and S. Woosley, Annu. Rev. Astron. Astrophys. 27, 629 (1989).ADSCrossRefGoogle Scholar
  6. 6.
    G. Taylor, Proc. R. Soc. Lond. A 201, 192 (1950).ADSCrossRefGoogle Scholar
  7. 7.
    O. Sadot, L. Erez, U. Alon, D. Oron, L. A. Levin, G. Erez, G. Ben-Dor, and D. Shvarts, Phys. Rev. Lett. 80, 1654 (1998).ADSCrossRefGoogle Scholar
  8. 8.
    N. J. Zabusky, Annu. Rev. Fluid Mech. 31, 495 (1999).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    M. Brouillette, Annu. Rev. Fluid Mech. 34, 445 (2002).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    B. D. Collins, and J. W. Jacobs, J. Fluid Mech. 464, 113 (2002).ADSCrossRefGoogle Scholar
  11. 11.
    Y. Liang, Z. G. Zhai, and X. S. Luo, Sci. China-Phys. Mech. Astron. 61, 064711 (2018).ADSCrossRefGoogle Scholar
  12. 12.
    Z. Wu, S. Huang, J. Ding, W. Wang, and X. Luo, Sci. China-Phys. Mech. Astron. 61, 114712 (2018).ADSCrossRefGoogle Scholar
  13. 13.
    G. Bell, Taylor Instability on Cylinders and Spheres in the Small Amplitude Approximation, Technical Report LA-1321 (Los Alamos National Laboratory, Los Alamos, 1951).Google Scholar
  14. 14.
    M. S. Plesset, J. Appl. Phys. 25, 96 (1954).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    K. O. Mikaelian, Phys. Fluids 17, 094105 (2005).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    C. Matsuoka, and K. Nishihara, Phys. Rev. E 74, 066303 (2006).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    W. Liu, C. Yu, W. Ye, L. Wang, and X. He. Phys. Plasmas 21, 062119 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    L. Wang, J. Wu, H. Guo, W. Ye, J. Liu, W. Zhang, and X. He. Phys. Plasmas 22, 082702 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    L. F. Wang, W. H. Ye, X. T. He, J. F. Wu, Z. F. Fan, C. Xue, H. Y. Guo, W. Y. Miao, Y. T. Yuan, J. Q. Dong, G. Jia, J. Zhang, Y. J. Li, J. Liu, M. Wang, Y. K. Ding, and W. Y. Zhang, Sci. China-Phys. Mech. Astron. 60, 055201 (2017).ADSCrossRefGoogle Scholar
  20. 20.
    J. R. Fincke, N. E. Lanier, S. H. Batha, R. M. Hueckstaedt, G. R. Magelssen, S. D. Rothman, K. W. Parker, and C. J. Horsfield, Laser Part. Beams 23, 21 (2005).ADSCrossRefGoogle Scholar
  21. 21.
    Q. Zhang, and M. J. Graham, Phys. Fluids 10, 974 (1998).ADSCrossRefGoogle Scholar
  22. 22.
    B. Tian, D. Fu, and Y. Ma, Acta Mech. Sin. 22, 9 (2006).ADSCrossRefGoogle Scholar
  23. 23.
    J. G. Zheng, T. S. Lee, and S. H. Winoto, Math. Comput. Simul. 79, 749 (2008).CrossRefGoogle Scholar
  24. 24.
    M. Lombardini, D. I. Pullin, and D. I. Meiron, J. Fluid Mech. 748, 113 (2014).ADSCrossRefGoogle Scholar
  25. 25.
    M. Lombardini, D. I. Pullin, and D. I. Meiron, J. Fluid Mech. 748, 85 (2014).ADSCrossRefGoogle Scholar
  26. 26.
    X. Luo, F. Zhang, J. Ding, T. Si, J. Yang, Z. Zhai, and C. Wen, J. Fluid Mech. 849, 231 (2018).ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    R. Abgrall, J. Comput. Phys. 125, 150 (1996).ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    K. M. Shyue, J. Comput. Phys. 142, 208 (1998).ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    H. Shen, C. Y. Wen, and D. L. Zhang, J. Comput. Phys. 288, 101 (2015).ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    H. Shen, and C. Y. Wen, J. Comput. Phys. 305, 775 (2016).ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    S. C. Chang, J. Comput. Phys. 119, 295 (1995).ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    H. Shen, C. Y. Wen, M. Parsani, and C. W. Shu, J. Comput. Phys. 330, 668 (2017).ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Z. Zhai, W. Li, T. Si, X. Luo, J. Yang, and X. Lu, Phys. Fluids 29, 016102 (2017).ADSCrossRefGoogle Scholar
  34. 34.
    H. Shen, and M. Parsani, J. Fluid Mech. 813, R4 (2017).ADSCrossRefGoogle Scholar
  35. 35.
    J. Ding, T. Si, J. Yang, X. Lu, Z. Zhai, and X. Luo, Phys. Rev. Lett. 119, 014501 (2017).ADSCrossRefGoogle Scholar
  36. 36.
    W. Chester, London Edinburgh Dublin Philos. Mag. J. Sci. 45, 1293 (1954).MathSciNetCrossRefGoogle Scholar
  37. 37.
    R. F. Chisnell, J. Fluid Mech. 2, 286 (1957).ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    G. B. Whitham, J. Fluid Mech. 4, 337 (1958).ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    M. Lombardini, and D. I. Pullin, Phys. Fluids 21, 044104 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • ZhiGang Zhai
    • 1
    Email author
  • Fu Zhang
    • 2
  • ZhangBo Zhou
    • 1
  • JuChun Ding
    • 1
  • Chih-Yung Wen
    • 3
  1. 1.Department of Modern MechanicsUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Beijing Institute of Space Long March VehicleBeijingChina
  3. 3.Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityHong KongChina

Personalised recommendations