Advertisement

Ground state properties and potential energy surfaces of 270Hs from multidimensionally-constrained relativistic mean field model

  • Xu Meng
  • BingNan Lu
  • ShanGui ZhouEmail author
Article
  • 14 Downloads

Abstract

We study the ground state properties, potential energy curves and potential energy surfaces of the superheavy nucleus 270Hs by using the multidimensionally-constrained relativistic mean-field model with the effective interaction PC-PK1. The binding energy, size and shape as well as single particle shell structure corresponding to the ground state of this nucleus are obtained. 270Hs is well deformed and exhibits deformed doubly magic feature in the single neutron and proton level schemes. One-dimensional potential energy curves and two-dimensional potential energy surfaces are calculated for 270Hs with various spatial symmetries imposed. We investigate in detail the effects of the reflection asymmetric and triaxial distortions on the fission barrier and fission path of 270Hs. When the axial symmetry is imposed, the reflection symmetric and reflection asymmetric fission barriers both show a double-hump structure and the former is higher. However, when triaxial shapes are allowed the reflection symmetric barrier is lowered very much and then the reflection symmetric fission path becomes favorable.

Keywords

MDC-RMF model superheavy nuclei potential energy surface fission barrier reflection asymmetry triaxial deformation 

References

  1. 1.
    J. H. Hamilton, S. Hofmann, and Y. T. Oganessian, Annu. Rev. Nucl. Part. Sci. 63, 383 (2013).ADSCrossRefGoogle Scholar
  2. 2.
    W. Nazarewicz, Nat. Phys. 14, 537 (2018).CrossRefGoogle Scholar
  3. 3.
    S. A. Giuliani, Z. Matheson, W. Nazarewicz, E. Olsen, P. G. Reinhard, J. Sadhukhan, B. Schuetrumpf, N. Schunck, and P. Schwerdtfeger, Rev. Mod. Phys. 91, 011001 (2019).ADSCrossRefGoogle Scholar
  4. 4.
    W. D. Myers, and W. J. Swiatecki, Nucl. Phys. 81, 1 (1966).CrossRefGoogle Scholar
  5. 5.
    C. Y. Wong, Phys. Lett. 21, 688 (1966).ADSCrossRefGoogle Scholar
  6. 6.
    A. Sobiczewski, F. A. Gareev, and B. N. Kalinkin, Phys. Lett. 22, 500 (1966).ADSCrossRefGoogle Scholar
  7. 7.
    H. Meldner, Ark. Fys. 36, 593 (1967).Google Scholar
  8. 8.
    U. Mosel, and W. Greiner, Z. Phys. 222, 261 (1969).ADSCrossRefGoogle Scholar
  9. 9.
    S. G. Nilsson, C. F. Tsang, A. Sobiczewski, Z. Szymański, S. Wycech, C. Gustafson, I. L. Lamm, P. Möller, and B. Nilsson, Nucl. Phys. A 131, 1 (1969).ADSCrossRefGoogle Scholar
  10. 10.
    S. Hofmann, and G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000).ADSCrossRefGoogle Scholar
  11. 11.
    K. Morita, Nucl. Phys. A 944, 30 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    Y. T. Oganessian, A. Sobiczewski, and G. M. Ter-Akopian, Phys. Scr. 92, 023003 (2017).ADSCrossRefGoogle Scholar
  13. 13.
    K. Rutz, M. Bender, T. Burvenich, T. Schilling, P. G. Reinhard, J. A. Maruhn, and W. Greiner, Phys. Rev. C 56, 238 (1997).ADSCrossRefGoogle Scholar
  14. 14.
    W. Zhang, J. Meng, S. Q. Zhang, L. S. Geng, and H. Toki, Nucl. Phys. A 753, 106 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    A. Sobiczewski, and K. Pomorski, Prog. Particle Nucl. Phys. 58, 292 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    X.-R. Zhou, C. Qiu, and H. Sagawa, in Effect of Tensor Interaction on the Shell Structure of Superheavy Nuclei: Nuclear Structure in China 2010—Proceedings of the 13th National Conference on Nuclear Structure in China, edited by H.-B. Bai, J. Meng, E.-G. Zhao, and S.-G. Zhou, Chi-Feng, Inner Mongolia, China, 24–30 July 2010, (World Scientific, Singapore, 2011), pp. 259–267.Google Scholar
  17. 17.
    J. J. Li, W. H. Long, J. Margueron, and N. Van Giai, Phys. Lett. B 732, 169 (2014), arXiv: 1303.2765.ADSCrossRefGoogle Scholar
  18. 18.
    Q. Mo, M. Liu, and N. Wang, Phys. Rev. C 90, 024320 (2014), arXiv: 1408.4872.ADSCrossRefGoogle Scholar
  19. 19.
    A. V. Afanasjev, S. E. Agbemava, and A. Gyawali, Phys. Lett. B 782, 533 (2018), arXiv: 1804.06395.ADSCrossRefGoogle Scholar
  20. 20.
    S. E. Agbemava, A. V. Afanasjev, A. Taninah, and A. Gyawali, Phys. Rev. C 99, 034316 (2019), arXiv: 1902.10108.ADSCrossRefGoogle Scholar
  21. 21.
    P. Moller, S. G. Nilsson, and J. R. Nix, Nucl. Phys. A 229, 292 (1974).ADSCrossRefGoogle Scholar
  22. 22.
    S. Čwiok, V. V. Pashkevich, J. Dudek, and W. Nazarewicz, Nucl. Phys. A 410, 254 (1983).ADSCrossRefGoogle Scholar
  23. 23.
    Z. Patyk, J. Skalski, A. Sobiczewski, and S. Ćwiok, Nucl. Phys. A 502, 591 (1989).ADSCrossRefGoogle Scholar
  24. 24.
    Z. Patyk, and A. Sobiczewski, Nucl. Phys. A 533, 132 (1991).ADSCrossRefGoogle Scholar
  25. 25.
    R. Smolanczuk, J. Skalski, and A. Sobiczewski, Phys. Rev. C 52, 1871 (1995).ADSCrossRefGoogle Scholar
  26. 26.
    J. Dvorak, W. Brüchle, M. Chelnokov, R. Dressler, C. E. Dullmann, K. Eberhardt, V. Gorshkov, E. Jäger, R. Krücken, A. Kuznetsov, Y. Nagame, F. Nebel, Z. Novackova, Z. Qin, M. Schädel, B. Schausten, E. Schimpf, A. Semchenkov, P. Thörle, A. Türler, M. Wegrzecki, B. Wierczinski, A. Yakushev, and A. Yeremin, Phys. Rev. Lett. 97, 242501 (2006).ADSCrossRefGoogle Scholar
  27. 27.
    Y. T. Oganessian, V. K. Utyonkov, F. S. Abdullin, S. N. Dmitriev, R. Graeger, R. A. Henderson, M. G. Itkis, Y. V. Lobanov, A. N. Mezentsev, K. J. Moody, S. L. Nelson, A. N. Polyakov, M. A. Ryabinin, R. N. Sagaidak, D. A. Shaughnessy, I. V. Shirokovsky, M. A. Stoyer, N. J. Stoyer, V. G. Subbotin, K. Subotic, A. M. Sukhov, Y. S. Tsyganov, A. Türler, A. A. Voinov, G. K. Vostokin, P. A. Wilk, and A. Yakushev, Phys. Rev. C 87, 034605 (2013).ADSCrossRefGoogle Scholar
  28. 28.
    V. V. Pashkevich, Nucl. Phys. A 133, 400 (1969).ADSCrossRefGoogle Scholar
  29. 29.
    P. Möller, J. R. Nix, in Calculation of Fission barriers: Proceedings of the Third IAEA Symposium on Physics and Chemistry of Fission, Rochester, New York, 13–17 August 1973, Vol. 1 (International Atomic Energy Agency, Vienna, 1974), pp. 103–140.Google Scholar
  30. 30.
    K. Rutz, J. A. Maruhn, P. G. Reinhard, and W. Greiner, Nucl. Phys. A 590, 680 (1995).ADSCrossRefGoogle Scholar
  31. 31.
    L. M. Robledo, and M. Warda, Int. J. Mod. Phys. E 17, 204 (2008), arXiv: 0710.4411.ADSCrossRefGoogle Scholar
  32. 32.
    M. Kowal, P. Jachimowicz, and A. Sobiczewski, Phys. Rev. C 82, 014303 (2010).ADSCrossRefGoogle Scholar
  33. 33.
    Z. P. Li, T. Nikšić, D. Vretenar, P. Ring, and J. Meng, Phys. Rev. C 81, 064321 (2010).ADSCrossRefGoogle Scholar
  34. 34.
    H. Abusara, A. V. Afanasjev, and P. Ring, Phys. Rev. C 82, 044303 (2010), arXiv: 1010.1803.ADSCrossRefGoogle Scholar
  35. 35.
    A. Staszczak, A. Baran, and W. Nazarewicz, Int. J. Mod. Phys. E 20, 552 (2011).ADSCrossRefGoogle Scholar
  36. 36.
    G. Royer, M. Jaffré, and D. Moreau, Phys. Rev. C 86, 044326 (2012).ADSCrossRefGoogle Scholar
  37. 37.
    B. N. Lu, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 85, 011301 (2012), arXiv: 1110.6769.ADSCrossRefGoogle Scholar
  38. 38.
    M. Warda, and J. L. Egido, Phys. Rev. C 86, 014322 (2012), arXiv: 1204.5867.ADSCrossRefGoogle Scholar
  39. 39.
    B. N. Lu, J. Zhao, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 89, 014323 (2014), arXiv: 1304.2513.ADSCrossRefGoogle Scholar
  40. 40.
    S. G. Zhou, Phys. Scr. 91, 063008 (2016), arXiv: 1605.00956.ADSCrossRefGoogle Scholar
  41. 41.
    J. Zhao, B. N. Lu, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 95, 014320 (2017), arXiv: 1606.08994.ADSCrossRefGoogle Scholar
  42. 42.
    B. D. Serot, and J. D. Walecka, Adv. Nucl. Phys. 16, 1 (1986).Google Scholar
  43. 43.
    P. G. Reinhard, Rep. Prog. Phys. 52, 439 (1989).ADSCrossRefGoogle Scholar
  44. 44.
    P. Ring, Prog. Particle Nucl. Phys. 37, 193 (1996).ADSCrossRefGoogle Scholar
  45. 45.
    M. Bender, P. H. Heenen, and P. G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).ADSCrossRefGoogle Scholar
  46. 46.
    D. Vretenar, A. Afanasjev, G. Lalazissis, and P. Ring, Phys. Rep. 409, 101 (2005).ADSCrossRefGoogle Scholar
  47. 47.
    J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Prog. Particle Nucl. Phys. 57, 470 (2006).ADSCrossRefGoogle Scholar
  48. 48.
    N. Paar, D. Vretenar, E. Khan, and G. Coló, Rep. Prog. Phys. 70, 691 (2007).ADSCrossRefGoogle Scholar
  49. 49.
    T. Nikšić, D. Vretenar, and P. Ring, Prog. Particle Nucl. Phys. 66, 519 (2011), arXiv: 1102.4193.ADSCrossRefGoogle Scholar
  50. 50.
    H. Liang, J. Meng, and S. G. Zhou, Phys. Rep. 570, 1 (2015), arXiv: 1411.6774.ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    J. Meng, and S. G. Zhou, J. Phys. G-Nucl. Part. Phys. 42, 093101 (2015), arXiv: 1507.01079.ADSCrossRefGoogle Scholar
  52. 52.
    J. Meng, Relativistic Density Functional for Nuclear Structure, Vol. 10 of International Review of Nuclear Physics (World Scientific Pub, Singapore, 2016).CrossRefGoogle Scholar
  53. 53.
    Y. K. Gambhir, P. Ring, and A. Thimet, Ann. Phys. 198, 132 (1990).ADSCrossRefGoogle Scholar
  54. 54.
    P. Ring, Y. K. Gambhir, and G. A. Lalazissis, Comput. Phys. Commun. 105, 77 (1997).ADSCrossRefGoogle Scholar
  55. 55.
    A. V. Afanasjev, P. Ring, and J. König, Nucl. Phys. A 676, 196 (2000).ADSCrossRefGoogle Scholar
  56. 56.
    L. S. Geng, J. Meng, and H. Toki, Chin. Phys. Lett. 24, 1865 (2007), arXiv: 0706.0491.ADSCrossRefGoogle Scholar
  57. 57.
    W. Zhang, Z. P. Li, S. Q. Zhang, and J. Meng, Phys. Rev. C 81, 034302 (2010), arXiv: 1003.2231.ADSCrossRefGoogle Scholar
  58. 58.
    Y. Y. Wang, and Z. X. Ren, Sci. China-Phys. Mech. Astron. 61, 082012 (2018), arXiv: 1711.07799.ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    B. Qi, H. Jia, C. Liu, and S. Y. Wang, Sci. China-Phys. Mech. Astron. 62, 012012 (2019).CrossRefGoogle Scholar
  60. 60.
    H. J. Xia, X. Y. Wu, H. Mei, and J. M. Yao, Sci. China-Phys. Mech. Astron. 62, 042011 (2019), arXiv: 1811.01486.CrossRefGoogle Scholar
  61. 61.
    M. Warda, J. L. Egido, L. M. Robledo, and K. Pomorski, Phys. Rev. C 66, 014310 (2002).ADSCrossRefGoogle Scholar
  62. 62.
    S. Karatzikos, A. V. Afanasjev, G. A. Lalazissis, and P. Ring, Phys. Lett. B 689, 72 (2010), arXiv: 0909.1233.ADSCrossRefGoogle Scholar
  63. 63.
    Y. Tian, and Z. Y. Ma, Chin. Phys. Lett. 23, 3226 (2006).ADSCrossRefGoogle Scholar
  64. 64.
    Y. Tian, Z. Y. Ma, and P. Ring, Phys. Lett. B 676, 44 (2009), arXiv: 0908.1844.ADSCrossRefGoogle Scholar
  65. 65.
    Y. Tian, Z. Y. Ma, and P. Ring, Phys. Rev. C 79, 064301 (2009), arXiv: 0908.1845.ADSCrossRefGoogle Scholar
  66. 66.
    P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, Berlin/Heidelberg/New York, 1980).CrossRefGoogle Scholar
  67. 67.
    J. Zhao, B. N. Lu, D. Vretenar, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 91, 014321 (2015), arXiv: 1404.5466.ADSCrossRefGoogle Scholar
  68. 68.
    J. Zhao, B. N. Lu, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 86, 057304 (2012), arXiv: 1209.6567.ADSCrossRefGoogle Scholar
  69. 69.
    C. Liu, S. Y. Wang, R. A. Bark, S. Q. Zhang, J. Meng, B. Qi, P. Jones, S. M. Wyngaardt, J. Zhao, C. Xu, S. G. Zhou, S. Wang, D. P. Sun, L. Liu, Z. Q. Li, N. B. Zhang, H. Jia, X. Q. Li, H. Hua, Q. B. Chen, Z. G. Xiao, H. J. Li, L. H. Zhu, T. D. Bucher, T. Dinoko, J. Easton, K. Juhász, A. Kamblawe, E. Khaleel, N. Khumalo, E. A. Lawrie, J. J. Lawrie, S. N. T. Majola, S. M. Mullins, S. Murray, J. Ndayishimye, D. Negi, S. P. Noncolela, S. S. Ntshangase, B. M. Nyakó, J. N. Orce, P. Papka, J. F. Sharpey-Schafer, O. Shirinda, P. Sithole, M. A. Stankiewicz, and M. Wiedeking, Phys. Rev. Lett. 116, 112501 (2016).ADSCrossRefGoogle Scholar
  70. 70.
    X. C. Chen, J. Zhao, C. Xu, H. Hua, T. M. Shneidman, S. G. Zhou, X. G. Wu, X. Q. Li, S. Q. Zhang, Z. H. Li, W. Y. Liang, J. Meng, F. R. Xu, B. Qi, Y. L. Ye, D. X. Jiang, Y. Y. Cheng, C. He, J. J. Sun, R. Han, C. Y. Niu, C. G. Li, P. J. Li, C. G. Wang, H. Y. Wu, Z. H. Li, H. Zhou, S. P. Hu, H. Q. Zhang, G. S. Li, C. Y. He, Y. Zheng, C. B. Li, H. W. Li, Y. H. Wu, P. W. Luo, and J. Zhong, Phys. Rev. C 94, 021301 (2016).ADSCrossRefGoogle Scholar
  71. 71.
    B. N. Lu, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 84, 014328 (2011), arXiv: 1104.4638.ADSCrossRefGoogle Scholar
  72. 72.
    B. N. Lu, E. Hiyama, H. Sagawa, and S. G. Zhou, Phys. Rev. C 89, 044307 (2014), arXiv: 1403.5866.ADSCrossRefGoogle Scholar
  73. 73.
    J. Zhao, B. N. Lu, T. Niksic, and D. Vretenar, Phys. Rev. C 92, 064315 (2015).ADSCrossRefGoogle Scholar
  74. 74.
    J. Zhao, B. N. Lu, T. Nikšić, D. Vretenar, and S. G. Zhou, Phys. Rev. C 93, 044315 (2016), arXiv: 1603.00992.ADSCrossRefGoogle Scholar
  75. 75.
    J. Zhao, T. Nikšić, D. Vretenar, and S. G. Zhou, Phys. Rev. C 99, 014618 (2019).ADSCrossRefGoogle Scholar
  76. 76.
    J. Zhao, J. Xiang, Z.-P. Li, T. Nikšić, D. Vretenar, and S. G. Zhou, Phys. Rev. C 99, 054613 (2019), arXiv: 1902.09535.ADSCrossRefGoogle Scholar
  77. 77.
    P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C 82, 054319 (2010), arXiv: 1002.1789.ADSCrossRefGoogle Scholar
  78. 78.
    P. W. Zhao, and Z. X. Li, Int. J. Mod. Phys. E 27, 1830007 (2018).ADSCrossRefGoogle Scholar
  79. 79.
    B. H. Sun, P. W. Zhao, and J. Meng, Sci. China-Phys. Mech. Astron. 54, 210 (2011).ADSCrossRefGoogle Scholar
  80. 80.
    P. W. Zhao, L. S. Song, B. Sun, H. Geissel, and J. Meng, Phys. Rev. C 86, 064324 (2012), arXiv: 1210.5010.ADSCrossRefGoogle Scholar
  81. 81.
    K. Q. Lu, Z. X. Li, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C 91, 027304 (2015), arXiv: 1502.06908.ADSCrossRefGoogle Scholar
  82. 82.
    X. W. Xia, Y. Lim, P. W. Zhao, H. Z. Liang, X. Y. Qu, Y. Chen, H. Liu, L. F. Zhang, S. Q. Zhang, Y. Kim, and J. Meng, Atomic Data Nucl. Data Tables 121–122, 1 (2018), arXiv: 1704.08906.ADSCrossRefGoogle Scholar
  83. 83.
    P. W. Zhao, S. Q. Zhang, and J. Meng, Phys. Rev. C 89, 011301 (2014).ADSCrossRefGoogle Scholar
  84. 84.
    D. T. Yordanov, D. L. Balabanski, M. L. Bissell, K. Blaum, I. Budinčević, B. Cheal, K. Flanagan, N. Frömmgen, G. Georgiev, C. Geppert, M. Hammen, M. Kowalska, K. Kreim, A. Krieger, J. Meng, R. Neugart, G. Neyens, W. Nörtershäuser, M. M. Rajabali, J. Papuga, S. Schmidt, and P. W. Zhao, Phys. Rev. Lett. 116, 032501 (2016).ADSCrossRefGoogle Scholar
  85. 85.
    H. Haas, S. P. A. Sauer, L. Hemmingsen, V. Kellö, and P. W. Zhao, Europhys. Lett. 117, 62001 (2017).ADSCrossRefGoogle Scholar
  86. 86.
    S. Quan, Z. P. Li, D. Vretenar, and J. Meng, Phys. Rev. C 97, 031301 (2018), arXiv: 1803.02142.ADSCrossRefGoogle Scholar
  87. 87.
    P. W. Zhao, Phys. Lett. B 773, 1 (2017), arXiv: 1706.06127.ADSCrossRefGoogle Scholar
  88. 88.
    P. W. Zhao, S. Q. Zhang, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Phys. Lett. B 699, 181 (2011), arXiv: 1101.4547.ADSCrossRefGoogle Scholar
  89. 89.
    P. W. Zhao, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Phys. Rev. Lett. 107, 122501 (2011), arXiv: 1105.3622.ADSCrossRefGoogle Scholar
  90. 90.
    J. Meng, J. Peng, S. Q. Zhang, and P. W. Zhao, Front. Phys. 8, 55 (2013), arXiv: 1301.1808.CrossRefGoogle Scholar
  91. 91.
    J. Peng, and P. W. Zhao, Phys. Rev. C 91, 044329 (2015).ADSCrossRefGoogle Scholar
  92. 92.
    J. Meng, and P. W. Zhao, Phys. Scr. 91, 053008 (2016), arXiv: 1604.02213.ADSCrossRefGoogle Scholar
  93. 93.
    W. Zhang, Z. P. Li, and S. Q. Zhang, Phys. Rev. C 88, 054324 (2013).ADSCrossRefGoogle Scholar
  94. 94.
    S. E. Agbemava, A. V. Afanasjev, T. Nakatsukasa, and P. Ring, Phys. Rev. C 92, 054310 (2015), arXiv: 1510.07909.ADSCrossRefGoogle Scholar
  95. 95.
    Z. X. Li, Z. H. Zhang, and P. W. Zhao, Front. Phys. 10, 268 (2015).CrossRefGoogle Scholar
  96. 96.
    Y. Tian, Z. Ma, and P. Ring, Phys. Rev. C 80, 024313 (2009), arXiv: 0908.1848.ADSCrossRefGoogle Scholar
  97. 97.
    G. Audi, F. G. Kondev, M. Wang, W. J. Huang, and S. Naimi, Chin. Phys. C 41, 030001 (2017).ADSCrossRefGoogle Scholar
  98. 98.
    W. J. Huang, G. Audi, M. Wang, F. G. Kondev, S. Naimi, and X. Xu, Chin. Phys. C 41, 030002 (2017).ADSCrossRefGoogle Scholar
  99. 99.
    M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X. Xu, Chin. Phys. C 41, 030003 (2017).ADSCrossRefGoogle Scholar
  100. 100.
    Z. Ren, Phys. Rev. C 65, 051304 (2002).ADSCrossRefGoogle Scholar
  101. 101.
    Z. Ren, F. Tai, and D. H. Chen, Phys. Rev. C 66, 064306 (2002).ADSCrossRefGoogle Scholar
  102. 102.
    L. Geng, H. Toki, and J. Meng, Prog. Theor. Phys. 113, 785 (2005).ADSCrossRefGoogle Scholar
  103. 103.
    L. Geng, Ground State Properties of Finite Nuclei in the Relativistic Mean Field Model, Dissertation for Doctoral Degree (Osaka University, Osaka, 2006).Google Scholar
  104. 104.
    S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. C 88, 024308 (2013).ADSCrossRefGoogle Scholar
  105. 105.
    H. F. Zhang, Y. Gao, N. Wang, J. Q. Li, E. G. Zhao, and G. Royer, Phys. Rev. C 85, 014325 (2012).ADSCrossRefGoogle Scholar
  106. 106.
    N. Wang, M. Liu, X. Wu, and J. Meng, Phys. Lett. B 734, 215 (2014), arXiv: 1405.2616.ADSCrossRefGoogle Scholar
  107. 107.
    P. Möller, A. J. Sierk, T. Ichikawa, and H. Sagawa, Atomic Data Nucl. Data Tables 109–110, 1 (2016), arXiv: 1508.06294.ADSCrossRefGoogle Scholar
  108. 108.
    M. Shi, Z. M. Niu, and H. Z. Liang, Chin. Phys. C 43, 074104 (2019).ADSCrossRefGoogle Scholar
  109. 109.
    N. Wang, M. Liu, and X. Wu, Phys. Rev. C 81, 044322 (2010), arXiv: 1001.1493.ADSCrossRefGoogle Scholar
  110. 110.
    N. Wang, Z. Liang, M. Liu, and X. Wu, Phys. Rev. C 82, 044304 (2010), arXiv: 1008.2115.ADSCrossRefGoogle Scholar
  111. 111.
    M. Liu, N. Wang, Y. Deng, and X. Wu, Phys. Rev. C 84, 014333 (2011), arXiv: 1104.0066.ADSCrossRefGoogle Scholar
  112. 112.
    J. Meng, and P. Ring, Phys. Rev. Lett. 77, 3963 (1996).ADSCrossRefGoogle Scholar
  113. 113.
    J. Meng, and P. Ring, Phys. Rev. Lett. 80, 460 (1998).ADSCrossRefGoogle Scholar
  114. 114.
    J. Meng, Nucl. Phys. A 635, 3 (1998).ADSCrossRefGoogle Scholar
  115. 115.
    X. Y. Qu, Y. Chen, S. Q. Zhang, P. W. Zhao, I. J. Shin, Y. Lim, Y. Kim, and J. Meng, Sci. China-Phys. Mech. Astron. 56, 2031 (2013), arXiv: 1309.3987.ADSCrossRefGoogle Scholar
  116. 116.
    M. D. Buhmann, Radial Basis Functions (Cambridge University Press, Cambridge, 2006).zbMATHGoogle Scholar
  117. 117.
    N. Wang, and M. Liu, Phys. Rev. C 84, 051303 (2011), arXiv: 1111.0354.ADSCrossRefGoogle Scholar
  118. 118.
    J. S. Zheng, N. Y. Wang, Z. Y. Wang, Z. M. Niu, Y. F. Niu, and B. Sun, Phys. Rev. C 90, 014303 (2014).ADSCrossRefGoogle Scholar
  119. 119.
    Z. M. Niu, B. H. Sun, H. Z. Liang, Y. F. Niu, and J. Y. Guo, Phys. Rev. C 94, 054315 (2016), arXiv: 1607.02075.ADSCrossRefGoogle Scholar
  120. 120.
    S. G. Zhou, J. Meng, P. Ring, and E. G. Zhao, Phys. Rev. C 82, 011301 (2010), arXiv: 0909.1600.ADSCrossRefGoogle Scholar
  121. 121.
    L. Li, J. Meng, P. Ring, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 85, 024312 (2012), arXiv: 1202.0070.ADSCrossRefGoogle Scholar
  122. 122.
    L. L. Li, J. Meng, P. Ring, E. G. Zhao, and S. G. Zhou, Chin. Phys. Lett. 29, 042101 (2012), arXiv: 1203.1363.ADSCrossRefGoogle Scholar
  123. 123.
    X. X. Sun, J. Zhao, and S. G. Zhou, Phys. Lett. B 785, 530 (2018), arXiv: 1807.04991.ADSCrossRefGoogle Scholar
  124. 124.
    Q. Z. Chai, W. J. Zhao, M. L. Liu, and H. L. Wang, Chin. Phys. C 42, 054101 (2018), arXiv: 1803.04616.ADSCrossRefGoogle Scholar
  125. 125.
    P. Möller, A. J. Sierk, T. Ichikawa, A. Iwamoto, R. Bengtsson, H. Uhrenholt, and S. Åberg, Phys. Rev. C 79, 064304 (2009).ADSCrossRefGoogle Scholar
  126. 126.
    N. Dubray, and D. Regnier, Comput. Phys. Commun. 183, 2035 (2012), arXiv: 1112.4196.ADSCrossRefGoogle Scholar
  127. 127.
    Z. Matheson, S. A. Giuliani, W. Nazarewicz, J. Sadhukhan, and N. Schunck, Phys. Rev. C 99, 041304 (2019), arXiv: 1812.06490.ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CAS Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingChina
  2. 2.School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Facility for Rare Isotope Beams and Department of Physics and AstronomyMichigan State UniversityLansingUSA
  4. 4.Center of Theoretical Nuclear PhysicsNational Laboratory of Heavy Ion AcceleratorLanzhouChina
  5. 5.Synergetic Innovation Center for Quantum Effects and ApplicationHunan Normal UniversityChangshaChina

Personalised recommendations