Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Asymmetrical Bell state analysis for photon-atoms hybrid system

  • 29 Accesses

Abstract

Bell-state analysis (BSA) has great application in the quantum communication. To our best knowledge, the current works are devoted to the physical realization of symmetrical 2×2-dimensional or 2N × 2N-dimensional 2-qudit BSA, and there is no work focused on the physical realization of the asymmetrical high-dimensional (for example 3×4-dimensional 2-qudit) Bell-states complete analysis. In this paper, by using the nonlinear interaction between the atoms and photons, we propose a scheme to completely distinguish the asymmetrical 3×4-dimensional 2-qudit Bell states of a hybrid system. We use the quantum information splitting, which is exploited to resolve the degree-mismatch issue in the quantum state sharing schemes, as an example to show the application of the asymmetrical BSA. Finally, we discuss its possible realization with current experimental techniques. Our asymmetrical high-dimensional BSA protocol may pave a new way for high-capacity long-distance quantum communication.

This is a preview of subscription content, log in to check access.

References

  1. 1

    A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).

  2. 2

    G. L. Long, and X. S. Liu, Phys. Rev. A 65, 032302 (2002).

  3. 3

    F. G. Deng, G. L. Long, and X. S. Liu, Phys. Rev. A 68, 042317 (2003).

  4. 4

    C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, Phys. Rev. A 71, 044305 (2005).

  5. 5

    W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, Phys. Rev. Lett. 118, 220501 (2017), arXiv: 1609.09184.

  6. 6

    F. Zhu, W. Zhang, Y. Sheng, and Y. Huang, Sci. Bull. 62, 1519 (2017).

  7. 7

    P. H. Niu, Z. R. Zhou, Z. S. Lin, Y. B. Sheng, L. G. Yin, and G. L. Long, Sci. Bull. 63, 1345 (2018).

  8. 8

    F. Z. Wu, G. J. Yang, H. B. Wang, J. Xiong, F. Alzahrani, A. Hobiny, and F. G. Deng, Sci. China-Phys. Mech. Astron. 60, 120313 (2017).

  9. 9

    S. S. Chen, L. Zhou, W. Zhong, and Y. B. Sheng, Sci. China-Phys. Mech. Astron. 61, 090312 (2018).

  10. 10

    Y. B. Sheng, and L. Zhou, Sci. Bull. 62, 1025 (2017).

  11. 11

    Y. B. Sheng, and L. Zhou, Phys. Rev. A 98, 052343 (2018).

  12. 12

    C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).

  13. 13

    Y. B. Zhan, Chin. Phys. 16, 1009 (2007).

  14. 14

    T. Cai, and M. Jiang, Int. J. Theor. Phys. 57, 131 (2018).

  15. 15

    L. Xu, X. Yong, J. Yang, P. Zhao, and Y. Tao, Int. J. Theor. Phys. 57, 381 (2018).

  16. 16

    P. C. Ma, G. B. Chen, X. W. Li, and Y. B. Zhan, Int. J. Theor. Phys. 57, 2233 (2018).

  17. 17

    X. S. Liu, G. L. Long, D. M. Tong, and F. Li, Phys. Rev. A 65, 022304 (2002).

  18. 18

    V. Karimipour, A. Bahraminasab, and S. Bagherinezhad, Phys. Rev. A 65, 052331 (2002).

  19. 19

    N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Phys. Rev. Lett. 88, 127902 (2002).

  20. 20

    S. P. Walborn, D. S. Lemelle, M. P. Almeida, and P. H. S. Ribeiro, Phys. Rev. Lett. 96, 090501 (2006).

  21. 21

    K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, Phys. Rev. Lett. 76, 4656 (1996).

  22. 22

    S. P. Walborn, S. Pádua, and C. H. Monken, Phys. Rev. A 68, 042313 (2003).

  23. 23

    C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, Phys. Rev. Lett. 96, 190501 (2006).

  24. 24

    M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, Phys. Rev. A 75, 042317 (2007).

  25. 25

    Y. B. Sheng, F. G. Deng, and G. L. Long, Phys. Rev. A 82, 032318 (2010), arXiv: 1103.0230.

  26. 26

    B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, Opt. Express 20, 24664 (2012), arXiv: 1207.0168.

  27. 27

    T. J. Wang, Y. Lu, and G. L. Long, Phys. Rev. A 86, 042337 (2012).

  28. 28

    S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, Phys. Rev. A 71, 060302 (2005).

  29. 29

    W. Zhang, Y. Liu, Z. Zhang, and C. Y. Cheung, Opt. Commun. 283, 628 (2010).

  30. 30

    L. Y. He, T. J. Wang, and C. Wang, Opt. Express 24, 15429 (2016).

  31. 31

    H. Rokhsari, and K. J. Vahala, Phys. Rev. Lett. 92, 253905 (2004).

  32. 32

    F. Monifi, J. Friedlein, S. K. Ozdemir, and S. K. Lan Yang, J. Lightwave Technol. 30, 3306 (2012), arXiv: 1304.7315.

  33. 33

    T. J. Wang, and C. Wang, Phys. Rev. A 90, 052310 (2014).

  34. 34

    L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).

  35. 35

    M. T. Gruneisen, W. A. Miller, R. C. Dymale, and A. M. Sweiti, Appl. Opt. 47, A32 (2008), arXiv: 0805.4392.

  36. 36

    Y. Liu, J. Pu, and B. Lü, Appl. Opt. 50, 4844 (2011).

  37. 37

    W. Zhang, Q. Qi, J. Zhou, and L. Chen, Phys. Rev. Lett. 112, 153601 (2014).

  38. 38

    L. Zhou, and Y. B. Sheng, Phys. Rev. A 92, 042314 (2015)

  39. 38a

    L. Zhou, and Y. B. Sheng, Phys. Rev. A 90, 024301 (2014)

  40. 38b

    L. Zhou, and Y. B. Sheng, Ann. Phys. 385, 10 (2017).

  41. 39

    Q. Chen, W. Yang, M. Feng, and J. Du, Phys. Rev. A 83, 054305 (2011).

  42. 40

    E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, Nature 466, 730 (2010).

  43. 41

    P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, Science 336, 1283 (2012).

  44. 42

    N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, and R. L. Walsworth, Nat. Commun. 4, 1743 (2013), arXiv: 1211.7094.

  45. 43

    G. Waldherr, Y. Wang, S. Zaiser, M. Jamali, T. Schulte-Herbrüggen, H. Abe, T. Ohshima, J. Isoya, J. F. Du, P. Neumann, and J. Wrachtrup, Nature 506, 204 (2014), arXiv: 1309.6424.

  46. 44

    R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, Nat. Phys. 5, 470 (2009).

  47. 45

    S. Schietinger, M. Barth, T. Aichele, and O. Benson, Nano Lett. 9, 1694 (2009).

  48. 46

    P. E. Barclay, K. M. C. Fu, C. Santori, A. Faraon, and R. G. Beausoleil, Phys. Rev. X 1, 011007 (2011), arXiv: 1105.5137.

  49. 47

    A. Faraon, P. E. Barclay, C. Santori, K. M. C. Fu, and R. G. Beausoleil, Nat. Photon 5, 301 (2011), arXiv: 1012.3815.

Download references

Author information

Correspondence to Tie-Jun Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, M., Bai, C. et al. Asymmetrical Bell state analysis for photon-atoms hybrid system. Sci. China Phys. Mech. Astron. 62, 120311 (2019). https://doi.org/10.1007/s11433-019-9414-2

Download citation

Keywords

  • quantum optics
  • quantum information processing
  • quantum cryptography