Advertisement

Stability of the linear chain structure for 12C in covariant density functional theory on a 3D lattice

  • 70 Accesses

  • 4 Citations

Abstract

The stability of the linear chain structure of three α clusters for 12C against the bending and fission is investigated in the cranking covariant density functional theory, in which the equation of motion is solved on a 3D lattice with the inverse Hamiltonian and the Fourier spectral methods. Starting from a twisted three α initial configuration, it is found that the linear chain structure is stable when the rotational frequency is within the range of ~2.0-~2.5 MeV. Beyond this range, the final states are not stable against fission. By examining the density distributions and the occupation of single-particle levels, however, these fissions are found to arise from the occupation of unphysical continuum with large angular momenta. To properly remove these unphysical continuum, a damping function for the cranking term is introduced. Eventually, the stable linear chain structure could survive up to the rotational frequency ~3.5 MeV, but the fission still occurs when the rotational frequency approaches ~4.0 MeV.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. [1]

    A. Bohr, and B. R. Mottelson, Nuclear Structure, vol. II (Benjamin, New York, 1975).

  2. [2]

    B. M. Nyakó, J. R. Cresswell, P. D. Forsyth, D. Howe, P. J. Nolan, M. A. Riley, J. F. Sharpey-Schafer, J. Simpson, N. J. Ward, and P. J. Twin, Phys. Rev. Lett. 52, 507 (1984).

  3. [3]

    P. J. Twin, B. M. Nyakó, A. H. Nelson, J. Simpson, M. A. Bentley, H. W. Cranmer-Gordon, P. D. Forsyth, D. Howe, A. R. Mokhtar, J. D. Morrison, J. F. Sharpey-Schafer, and G. Sletten, Phys. Rev. Lett. 57, 811 (1986).

  4. [4]

    A. Galindo-Uribarri, H. R. Andrews, G. C. Ball, T. E. Drake, V. P. Janzen, J. A. Kuehner, S. M. Mullins, L. Persson, D. Prévost, D. C. Radford, J. C. Waddington, D. Ward, and R. Wyss, Phys. Rev. Lett. 71, 231 (1993).

  5. [5]

    D. R. LaFosse, D. G. Sarantites, C. Baktash, P. F. Hua, B. Cederwall, P. Fallon, C. J. Gross, H. Q. Jin, M. Korolija, I. Y. Lee, A. O. Macchiavelli, M. R. Maier, W. Rathbun, D. W. Stracener, and T. R. Werner, Phys. Rev. Lett. 74, 5186 (1995).

  6. [6]

    A. Krasznahorkay, M. Hunyadi, M. N. Harakeh, M. Csatlós, T. Faestermann, A. Gollwitzer, G. Graw, J. Gulyás, D. Habs, R. Hertenberger, H. J. Maier, Z. Máté, D. Rudolph, P. Thirolf, J. Timár, and B. D. Valnion, Phys. Rev. Lett. 80, 2073 (1998).

  7. [7]

    H. Morinaga, Phys. Rev. 101, 254 (1956).

  8. [8]

    Y. Fujiwara, H. Horiuchi, K. Ikeda, M. Kamimura, K. Kat, Y. Suzuki, and E. Uegaki, Prog. Theor. Phys. Suppl. 68, 29 (1980).

  9. [9]

    A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Phys. Rev. Lett. 87, 192501 (2001).

  10. [10]

    T. Suhara, Y. Funaki, B. Zhou, H. Horiuchi, and A. Tohsaki, Phys. Rev. Lett. 112, 062501 (2014), arXiv: 1310.7684.

  11. [11]

    P. W. Zhao, N. Itagaki, and J. Meng, Phys. Rev. Lett. 115, 022501 (2015), arXiv: 1410.3986.

  12. [12]

    N. Itagaki, S. Okabe, K. Ikeda, and I. Tanihata, Phys. Rev. C 64, 014301 (2001).

  13. [13]

    M. Milin, and W. von Oertzen, Eur. Phys. J. A 14, 295 (2002).

  14. [14]

    W. von Oertzen, H. G. Bohlen, M. Milin, T. Kokalova, S. Thummerer, A. Tumino, R. Kalpakchieva, T. N. Massey, Y. Eisermann, G. Graw, T. Faestermann, R. Hertenberger, and H. F. Wirth, Eur. Phys. J. A 21, 193 (2004).

  15. [15]

    N. Itagaki, W. Oertzen, and S. Okabe, Phys. Rev. C 74, 067304 (2006).

  16. [16]

    T. Suhara, and Y. Kanada-En’yo, Phys. Rev. C 82, 044301 (2010), arXiv: 1004.4954.

  17. [17]

    N. Furutachi, and M. Kimura, Phys. Rev. C 83, 021303 (2011).

  18. [18]

    M. Freer, J. D. Malcolm, N. L. Achouri, N. I. Ashwood, D. W. Bardayan, S. M. Brown, W. N. Catford, K. A. Chipps, J. Cizewski, N. Curtis, K. L. Jones, T. Munoz-Britton, S. D. Pain, N. Soíc, C. Wheldon, G. L. Wilson, and V. A. Ziman, Phys. Rev. C 90, 054324 (2014).

  19. [19]

    T. Baba, Y. Chiba, and M. Kimura, Phys. Rev. C 90, 064319 (2014), arXiv: 1410.0789.

  20. [20]

    W. B. He, Y. G. Ma, X. G. Cao, X. Z. Cai, and G. Q. Zhang, Phys. Rev. Lett. 113, 032506 (2014), arXiv: 1407.5414.

  21. [21]

    L. Liu, and P. W. Zhao, Chin. Phys. C 36, 818 (2012).

  22. [22]

    W. B. He, Y. G. Ma, X. G. Cao, X. Z. Cai, and G. Q. Zhang, Phys. Rev. C 94, 014301 (2016), arXiv: 1602.08955.

  23. [23]

    A. Fritsch, S. Beceiro-Novo, D. Suzuki, W. Mittig, J. J. Kolata, T. Ahn, D. Bazin, F. D. Becchetti, B. Bucher, Z. Chajecki, X. Fang, M. Febbraro, A. M. Howard, Y. Kanada-En’yo, W. G. Lynch, A. J. Mitchell, M. Ojaruega, A. M. Rogers, A. Shore, T. Suhara, X. D. Tang, R. Torres-Isea, and H. Wang, Phys. Rev. C 93, 014321 (2016).

  24. [24]

    J. Li, Y. L. Ye, Z. H. Li, C. J. Lin, Q. T. Li, Y. C. Ge, J. L. Lou, Z. Y. Tian, W. Jiang, Z. H. Yang, J. Feng, P. J. Li, J. Chen, Q. Liu, H. L. Zang, B. Yang, Y. Zhang, Z. Q. Chen, Y. Liu, X. H. Sun, J. Ma, H. M. Jia, X. X. Xu, L. Yang, N. R. Ma, and L. J. Sun, Phys. Rev. C 95, 021303 (2017), arXiv: 1702.00617.

  25. [25]

    H. Yamaguchi, D. Kahl, S. Hayakawa, Y. Sakaguchi, K. Abe, T. Nakao, T. Suhara, N. Iwasa, A. Kim, D. H. Kim, S. M. Cha, M. S. Kwag, J. H. Lee, E. J. Lee, K. Y. Chae, Y. Wakabayashi, N. Imai, N. Kitamura, P. Lee, J. Y. Moon, K. B. Lee, C. Akers, H. S. Jung, N. N. Duy, L. H. Khiem, and C. S. Lee, Phys. Lett. B 766, 11 (2017), arXiv: 1610.06296.

  26. [26]

    T. Baba, and M. Kimura, Phys. Rev. C 95, 064318 (2017), arXiv: 1702.04874.

  27. [27]

    P. Zhao, and Z. Li, Int. J. Mod. Phys. E 27, 1830007 (2018).

  28. [28]

    J. M. Yao, N. Itagaki, and J. Meng, Phys. Rev. C 90, 054307 (2014).

  29. [29]

    P. Chevallier, F. Scheibling, G. Goldring, I. Plesser, and M. W. Sachs, Phys. Rev. 160, 827 (1967).

  30. [30]

    Y. Suzuki, H. Horiuchi, and K. Ikeda, Prog. Theor. Phys. 47, 1517 (1972).

  31. [31]

    H. Flocard, P. H. Heenen, S. J. Krieger, and M. S. Weiss, Prog. Theor. Phys. 72, 1000 (1984).

  32. [32]

    M. Bender, and P. H. Heenen, Nucl. Phys. A 713, 390 (2003).

  33. [33]

    T. Ichikawa, J. A. Maruhn, N. Itagaki, and S. Ohkubo, Phys. Rev. Lett. 107, 112501 (2011), arXiv: 1106.3443.

  34. [34]

    A. H. Wuosmaa, R. R. Betts, B. B. Back, M. Freer, B. G. Glagola, T. Happ, D. J. Henderson, P. Wilt, and I. G. Bearden, Phys. Rev. Lett. 68, 1295 (1992).

  35. [35]

    Y. Iwata, T. Ichikawa, N. Itagaki, J. A. Maruhn, and T. Otsuka, Phys. Rev. C 92, 011303 (2015), arXiv: 1409.8012.

  36. [36]

    T. Neff, and H. Feldmeier, Nucl. Phys. A 738, 357 (2004).

  37. [37]

    Y. Kanada-En’yo, Prog. Theor. Phys. 117, 655 (2007).

  38. [38]

    W. von Oertzen, M. Freer, and Y. Kanadaenyo, Phys. Rep. 432, 43 (2006).

  39. [39]

    M. Freer, H. Horiuchi, Y. Kanada-En’yo, D. Lee, and U. G. Meißner, Rev. Mod. Phys. 90, 035004 (2018), arXiv: 1705.06192.

  40. [40]

    A. S. Umar, J. A. Maruhn, N. Itagaki, and V. E. Oberacker, Phys. Rev. Lett. 104, 212503 (2010), arXiv: 1003.4711.

  41. [41]

    J. A. Maruhn, N. Loebl, N. Itagaki, and M. Kimura, Nucl. Phys. A 833, 1 (2010).

  42. [42]

    J. P. Ebran, E. Khan, T. Nikšić, and D. Vretenar, Phys. Rev. C 90, 054329 (2014), arXiv: 1406.2473.

  43. [43]

    K. T. R. Davies, H. Flocard, S. Krieger, and M. S. Weiss, Nucl. Phys. A 342, 111 (1980).

  44. [44]

    P. G. Reinhard, and R. Y. Cusson, Nucl. Phys. A 378, 418 (1982).

  45. [45]

    J. A. Maruhn, P. G. Reinhard, P. D. Stevenson, and A. S. Umar, Comput. Phys. Commun. 185, 2195 (2014), arXiv: 1310.5946.

  46. [46]

    C. Yu, and L. Guo, Sci. China-Phys. Mech. Astron. 60, 092011 (2017).

  47. [47]

    P. Ring, Prog. Particle Nucl. Phys. 37, 193 (1996).

  48. [48]

    D. Vretenar, A. Afanasjev, G. Lalazissis, and P. Ring, Phys. Rep. 409, 101 (2005).

  49. [49]

    J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Prog. Particle Nucl. Phys. 57, 470 (2006).

  50. [50]

    H. Liang, J. Meng, and S. G. Zhou, Phys. Rep. 570, 1 (2015), arXiv: 1411.6774.

  51. [51]

    A. V. Afanasjev, D. B. Fossan, G. J. Lane, and I. Ragnarsson, Phys. Rep. 322, 1 (1999).

  52. [52]

    J. Meng, J. Peng, S. Q. Zhang, and P. W. Zhao, Front. Phys. 8, 55 (2013), arXiv: 1301.1808.

  53. [53]

    J. Meng, Relativistic Density Functional for Nuclear Structure, International Review of Nuclear Physics Vol. 10 (World Scientific, Singapore, 2016).

  54. [54]

    H. J. Xia, H. Mei, and J. M. Yao, Sci. China-Phys. Mech. Astron. 60, 102021 (2017), arXiv: 1705.04904.

  55. [55]

    J. Peng, J. Meng, P. Ring, and S. Q. Zhang, Phys. Rev. C 78, 024313 (2008).

  56. [56]

    P. W. Zhao, S. Q. Zhang, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Phys. Lett. B 699, 181 (2011), arXiv: 1101.4547.

  57. [57]

    P. W. Zhao, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Phys. Rev. Lett. 107, 122501 (2011), arXiv: 1105.3622.

  58. [58]

    P. W. Zhao, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Phys. Rev. C 85, 054310 (2012), arXiv: 1205.0867.

  59. [59]

    J. Meng, J. Peng, S. Q. Zhang, and S. G. Zhou, Phys. Rev. C 73, 037303 (2006).

  60. [60]

    J. Meng, and P. Zhao, Phys. Scr. 91, 053008 (2016), arXiv: 1604.02213.

  61. [61]

    P. W. Zhao, Phys. Lett. B 773, 1 (2017), arXiv: 1706.06127.

  62. [62]

    Y. Zhang, H. Liang, and J. Meng, Int. J. Mod. Phys. E 19, 55 (2010), arXiv: 0905.2505.

  63. [63]

    B. N. Lu, J. Zhao, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 89, 014323 (2014), arXiv: 1304.2513.

  64. [64]

    S. G. Zhou, Phys. Scr. 91, 063008 (2016), arXiv: 1605.00956.

  65. [65]

    K. G. Wilson, in New Phenomena in Subnuclear Physics, edited by A. Zichichi (Springer, Boston, 1977), pp. 69–142.

  66. [66]

    Y. Tanimura, K. Hagino, and H. Z. Liang, Prog. Theor. Exp. Phys. 2015, 073D01 (2015), arXiv: 1411.7804.

  67. [67]

    K. Hagino, and Y. Tanimura, Phys. Rev. C 82, 057301 (2010), arXiv: 1008.4995.

  68. [68]

    R. N. Hill, and C. Krauthauser, Phys. Rev. Lett. 72, 2151 (1994).

  69. [69]

    Z. X. Ren, S. Q. Zhang, and J. Meng, Phys. Rev. C 95, 024313 (2017), arXiv: 1612.09429.

  70. [70]

    W. Long, J. Meng, N. V. Giai, and S. G. Zhou, Phys. Rev. C 69, 034319 (2004).

  71. [71]

    G. A. Lalazissis, T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev. C 71, 024312 (2005).

  72. [72]

    T. Bürvenich, D. G. Madland, J. A. Maruhn, and P. G. Reinhard, Phys. Rev. C 65, 044308 (2002).

  73. [73]

    T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev. C 78, 034318 (2008), arXiv: 0809.1375.

  74. [74]

    P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C 82, 054319 (2010), arXiv: 1002.1789.

  75. [75]

    W. Koepf, and P. Ring, Nucl. Phys. A 493, 61 (1989).

  76. [76]

    W. Koepf, and P. Ring, Nucl. Phys. A 511, 279 (1990).

  77. [77]

    J. König, and P. Ring, Phys. Rev. Lett. 71, 3079 (1993).

  78. [78]

    H. Madokoro, J. Meng, M. Matsuzaki, and S. Yamaji, Phys. Rev. C 62, 061301 (2000).

  79. [79]

    P. Ring, and P. Schuck, The Nuclear Many-Body Problem (Springer Science & Business Media, New York, 2004).

  80. [80]

    S. Frauendorf, and J. Meng, Z. Phys. A-Hadrons Nuclei 356, 263 (1996).

  81. [81]

    S. Frauendorf, Rev. Mod. Phys. 73, 463 (2001).

  82. [82]

    J. Shen, T. Tang, and L. L. Wang, Spectral Methods: Algorithms, Analysis and Applications (Springer, Dordrecht, 2011).

  83. [83]

    Y. Y. Wang, and Z. X. Ren, Sci. China-Phys. Mech. Astron. 61, 082012 (2018), arXiv: 1711.07799.

  84. [84]

    M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X. Xu, Chin. Phys. C 41, 030003 (2017).

Download references

Author information

Correspondence to Jie Meng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ren, Z., Zhang, S., Zhao, P. et al. Stability of the linear chain structure for 12C in covariant density functional theory on a 3D lattice. Sci. China Phys. Mech. Astron. 62, 112062 (2019). https://doi.org/10.1007/s11433-019-9412-3

Download citation

Key words

  • covariant density functional theory
  • cranking model
  • 3D lattice space
  • linear chain structure
  • alpha-cluster structure
  • collective rotation
  • 12C